Properties

Label 2-33600-1.1-c1-0-137
Degree $2$
Conductor $33600$
Sign $-1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s + 2·11-s − 5·13-s + 3·17-s + 8·19-s + 21-s + 23-s − 27-s − 29-s + 9·31-s − 2·33-s − 2·37-s + 5·39-s + 7·41-s + 7·43-s − 12·47-s + 49-s − 3·51-s − 13·53-s − 8·57-s − 15·59-s − 7·61-s − 63-s − 4·67-s − 69-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s + 0.603·11-s − 1.38·13-s + 0.727·17-s + 1.83·19-s + 0.218·21-s + 0.208·23-s − 0.192·27-s − 0.185·29-s + 1.61·31-s − 0.348·33-s − 0.328·37-s + 0.800·39-s + 1.09·41-s + 1.06·43-s − 1.75·47-s + 1/7·49-s − 0.420·51-s − 1.78·53-s − 1.05·57-s − 1.95·59-s − 0.896·61-s − 0.125·63-s − 0.488·67-s − 0.120·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 - T + p T^{2} \) 1.23.ab
29 \( 1 + T + p T^{2} \) 1.29.b
31 \( 1 - 9 T + p T^{2} \) 1.31.aj
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 7 T + p T^{2} \) 1.43.ah
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 + 13 T + p T^{2} \) 1.53.n
59 \( 1 + 15 T + p T^{2} \) 1.59.p
61 \( 1 + 7 T + p T^{2} \) 1.61.h
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.42806574044010, −14.63441136768074, −14.19412118874293, −13.81353009548777, −13.06678327231910, −12.41648908439758, −12.13776145822244, −11.66586748170469, −11.13009754287448, −10.36462713656362, −9.917884406307152, −9.373348731283880, −9.147711587651715, −7.896068433084029, −7.700455318289663, −7.100725447878915, −6.353156373678302, −5.987551516290684, −5.128864923991004, −4.805880787178083, −4.081587982526987, −3.071897953594424, −2.888594701051244, −1.634353714876826, −0.9968311635016983, 0, 0.9968311635016983, 1.634353714876826, 2.888594701051244, 3.071897953594424, 4.081587982526987, 4.805880787178083, 5.128864923991004, 5.987551516290684, 6.353156373678302, 7.100725447878915, 7.700455318289663, 7.896068433084029, 9.147711587651715, 9.373348731283880, 9.917884406307152, 10.36462713656362, 11.13009754287448, 11.66586748170469, 12.13776145822244, 12.41648908439758, 13.06678327231910, 13.81353009548777, 14.19412118874293, 14.63441136768074, 15.42806574044010

Graph of the $Z$-function along the critical line