Properties

Label 2-33600-1.1-c1-0-120
Degree $2$
Conductor $33600$
Sign $-1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 7-s + 9-s − 3·11-s − 4·13-s + 6·17-s − 4·19-s − 21-s + 3·23-s − 27-s − 3·29-s + 10·31-s + 3·33-s − 7·37-s + 4·39-s + 43-s − 12·47-s + 49-s − 6·51-s + 6·53-s + 4·57-s + 12·59-s + 4·61-s + 63-s + 7·67-s − 3·69-s − 9·71-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.904·11-s − 1.10·13-s + 1.45·17-s − 0.917·19-s − 0.218·21-s + 0.625·23-s − 0.192·27-s − 0.557·29-s + 1.79·31-s + 0.522·33-s − 1.15·37-s + 0.640·39-s + 0.152·43-s − 1.75·47-s + 1/7·49-s − 0.840·51-s + 0.824·53-s + 0.529·57-s + 1.56·59-s + 0.512·61-s + 0.125·63-s + 0.855·67-s − 0.361·69-s − 1.06·71-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 - T \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 3 T + p T^{2} \) 1.23.ad
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 7 T + p T^{2} \) 1.37.h
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 + 12 T + p T^{2} \) 1.47.m
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 4 T + p T^{2} \) 1.61.ae
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 9 T + p T^{2} \) 1.71.j
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.15969332386046, −14.77286886174465, −14.35822955016360, −13.61629005904564, −13.02780105247871, −12.65133591696179, −11.98978036047711, −11.69438425331913, −11.02076223564246, −10.35181763228597, −10.06112934823578, −9.618102649482007, −8.614118632666447, −8.241858282117215, −7.610005388236954, −7.074460844725291, −6.538852533877368, −5.661298310741993, −5.291351886309724, −4.777021183885752, −4.130949536950722, −3.221203578058590, −2.597132503005154, −1.823975472909786, −0.9108536557755331, 0, 0.9108536557755331, 1.823975472909786, 2.597132503005154, 3.221203578058590, 4.130949536950722, 4.777021183885752, 5.291351886309724, 5.661298310741993, 6.538852533877368, 7.074460844725291, 7.610005388236954, 8.241858282117215, 8.614118632666447, 9.618102649482007, 10.06112934823578, 10.35181763228597, 11.02076223564246, 11.69438425331913, 11.98978036047711, 12.65133591696179, 13.02780105247871, 13.61629005904564, 14.35822955016360, 14.77286886174465, 15.15969332386046

Graph of the $Z$-function along the critical line