Properties

Label 2-33600-1.1-c1-0-117
Degree $2$
Conductor $33600$
Sign $-1$
Analytic cond. $268.297$
Root an. cond. $16.3797$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 7-s + 9-s − 2·11-s − 2·13-s + 8·17-s − 2·19-s + 21-s − 27-s + 6·29-s − 6·31-s + 2·33-s − 8·37-s + 2·39-s + 6·41-s + 8·43-s − 4·47-s + 49-s − 8·51-s + 2·53-s + 2·57-s − 8·59-s − 10·61-s − 63-s − 12·67-s + 14·71-s − 10·73-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.377·7-s + 1/3·9-s − 0.603·11-s − 0.554·13-s + 1.94·17-s − 0.458·19-s + 0.218·21-s − 0.192·27-s + 1.11·29-s − 1.07·31-s + 0.348·33-s − 1.31·37-s + 0.320·39-s + 0.937·41-s + 1.21·43-s − 0.583·47-s + 1/7·49-s − 1.12·51-s + 0.274·53-s + 0.264·57-s − 1.04·59-s − 1.28·61-s − 0.125·63-s − 1.46·67-s + 1.66·71-s − 1.17·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 33600 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(33600\)    =    \(2^{6} \cdot 3 \cdot 5^{2} \cdot 7\)
Sign: $-1$
Analytic conductor: \(268.297\)
Root analytic conductor: \(16.3797\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 33600,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 + 8 T + p T^{2} \) 1.59.i
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.32433059167934, −14.68722439840101, −14.23447711161550, −13.75283888806561, −12.92793600690093, −12.61388943598187, −12.09525342164326, −11.76816047074256, −10.83165487480116, −10.43514294160287, −10.15840276812647, −9.331994930985513, −8.994591800303279, −8.013207559218460, −7.624597120465984, −7.173476744560128, −6.296342466035333, −5.933406699550861, −5.210576901594139, −4.837069471419365, −3.964519775955479, −3.286385661777856, −2.679957141118064, −1.764105399346455, −0.9006338875616792, 0, 0.9006338875616792, 1.764105399346455, 2.679957141118064, 3.286385661777856, 3.964519775955479, 4.837069471419365, 5.210576901594139, 5.933406699550861, 6.296342466035333, 7.173476744560128, 7.624597120465984, 8.013207559218460, 8.994591800303279, 9.331994930985513, 10.15840276812647, 10.43514294160287, 10.83165487480116, 11.76816047074256, 12.09525342164326, 12.61388943598187, 12.92793600690093, 13.75283888806561, 14.23447711161550, 14.68722439840101, 15.32433059167934

Graph of the $Z$-function along the critical line