| L(s)  = 1 | − 3·7-s             + 3·13-s         + 8·17-s     − 5·19-s                     + 8·29-s     + 3·31-s             + 6·37-s         − 4·41-s     − 7·43-s         − 4·47-s     + 2·49-s         + 4·53-s             + 4·59-s     + 5·61-s             − 13·67-s         + 8·71-s     + 10·73-s             − 4·79-s                     − 12·89-s     − 9·91-s             − 3·97-s         + 101-s     + 103-s         + 107-s     + 109-s         + 113-s             − 24·119-s  + ⋯ | 
| L(s)  = 1 | − 1.13·7-s             + 0.832·13-s         + 1.94·17-s     − 1.14·19-s                     + 1.48·29-s     + 0.538·31-s             + 0.986·37-s         − 0.624·41-s     − 1.06·43-s         − 0.583·47-s     + 2/7·49-s         + 0.549·53-s             + 0.520·59-s     + 0.640·61-s             − 1.58·67-s         + 0.949·71-s     + 1.17·73-s             − 0.450·79-s                     − 1.27·89-s     − 0.943·91-s             − 0.304·97-s         + 0.0995·101-s     + 0.0985·103-s         + 0.0966·107-s     + 0.0957·109-s         + 0.0940·113-s             − 2.20·119-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(2.304498757\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(2.304498757\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 \) |  | 
|  | 3 | \( 1 \) |  | 
|  | 5 | \( 1 \) |  | 
|  | 11 | \( 1 \) |  | 
| good | 7 | \( 1 + 3 T + p T^{2} \) | 1.7.d | 
|  | 13 | \( 1 - 3 T + p T^{2} \) | 1.13.ad | 
|  | 17 | \( 1 - 8 T + p T^{2} \) | 1.17.ai | 
|  | 19 | \( 1 + 5 T + p T^{2} \) | 1.19.f | 
|  | 23 | \( 1 + p T^{2} \) | 1.23.a | 
|  | 29 | \( 1 - 8 T + p T^{2} \) | 1.29.ai | 
|  | 31 | \( 1 - 3 T + p T^{2} \) | 1.31.ad | 
|  | 37 | \( 1 - 6 T + p T^{2} \) | 1.37.ag | 
|  | 41 | \( 1 + 4 T + p T^{2} \) | 1.41.e | 
|  | 43 | \( 1 + 7 T + p T^{2} \) | 1.43.h | 
|  | 47 | \( 1 + 4 T + p T^{2} \) | 1.47.e | 
|  | 53 | \( 1 - 4 T + p T^{2} \) | 1.53.ae | 
|  | 59 | \( 1 - 4 T + p T^{2} \) | 1.59.ae | 
|  | 61 | \( 1 - 5 T + p T^{2} \) | 1.61.af | 
|  | 67 | \( 1 + 13 T + p T^{2} \) | 1.67.n | 
|  | 71 | \( 1 - 8 T + p T^{2} \) | 1.71.ai | 
|  | 73 | \( 1 - 10 T + p T^{2} \) | 1.73.ak | 
|  | 79 | \( 1 + 4 T + p T^{2} \) | 1.79.e | 
|  | 83 | \( 1 + p T^{2} \) | 1.83.a | 
|  | 89 | \( 1 + 12 T + p T^{2} \) | 1.89.m | 
|  | 97 | \( 1 + 3 T + p T^{2} \) | 1.97.d | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−13.61853684131221, −13.08628911365015, −12.79564274801141, −12.20894236998400, −11.82551347106453, −11.30235807155051, −10.48134117848535, −10.30712359366012, −9.756364540916490, −9.407834310096349, −8.514761952254731, −8.347781212763030, −7.803814161903581, −6.990995104145402, −6.584869543676676, −6.155869338731987, −5.663846770500200, −5.021766464120047, −4.332733291749142, −3.752392060168722, −3.164059692143865, −2.846885907874752, −1.926765111439868, −1.132018745481463, −0.5264792106738387, 
0.5264792106738387, 1.132018745481463, 1.926765111439868, 2.846885907874752, 3.164059692143865, 3.752392060168722, 4.332733291749142, 5.021766464120047, 5.663846770500200, 6.155869338731987, 6.584869543676676, 6.990995104145402, 7.803814161903581, 8.347781212763030, 8.514761952254731, 9.407834310096349, 9.756364540916490, 10.30712359366012, 10.48134117848535, 11.30235807155051, 11.82551347106453, 12.20894236998400, 12.79564274801141, 13.08628911365015, 13.61853684131221
