Properties

Label 2-330e2-1.1-c1-0-30
Degree $2$
Conductor $108900$
Sign $1$
Analytic cond. $869.570$
Root an. cond. $29.4884$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 3·13-s + 8·17-s − 5·19-s + 8·29-s + 3·31-s + 6·37-s − 4·41-s − 7·43-s − 4·47-s + 2·49-s + 4·53-s + 4·59-s + 5·61-s − 13·67-s + 8·71-s + 10·73-s − 4·79-s − 12·89-s − 9·91-s − 3·97-s + 101-s + 103-s + 107-s + 109-s + 113-s − 24·119-s + ⋯
L(s)  = 1  − 1.13·7-s + 0.832·13-s + 1.94·17-s − 1.14·19-s + 1.48·29-s + 0.538·31-s + 0.986·37-s − 0.624·41-s − 1.06·43-s − 0.583·47-s + 2/7·49-s + 0.549·53-s + 0.520·59-s + 0.640·61-s − 1.58·67-s + 0.949·71-s + 1.17·73-s − 0.450·79-s − 1.27·89-s − 0.943·91-s − 0.304·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s − 2.20·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 108900 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(108900\)    =    \(2^{2} \cdot 3^{2} \cdot 5^{2} \cdot 11^{2}\)
Sign: $1$
Analytic conductor: \(869.570\)
Root analytic conductor: \(29.4884\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 108900,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.304498757\)
\(L(\frac12)\) \(\approx\) \(2.304498757\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 - 3 T + p T^{2} \) 1.13.ad
17 \( 1 - 8 T + p T^{2} \) 1.17.ai
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 4 T + p T^{2} \) 1.41.e
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 5 T + p T^{2} \) 1.61.af
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 + 3 T + p T^{2} \) 1.97.d
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.61853684131221, −13.08628911365015, −12.79564274801141, −12.20894236998400, −11.82551347106453, −11.30235807155051, −10.48134117848535, −10.30712359366012, −9.756364540916490, −9.407834310096349, −8.514761952254731, −8.347781212763030, −7.803814161903581, −6.990995104145402, −6.584869543676676, −6.155869338731987, −5.663846770500200, −5.021766464120047, −4.332733291749142, −3.752392060168722, −3.164059692143865, −2.846885907874752, −1.926765111439868, −1.132018745481463, −0.5264792106738387, 0.5264792106738387, 1.132018745481463, 1.926765111439868, 2.846885907874752, 3.164059692143865, 3.752392060168722, 4.332733291749142, 5.021766464120047, 5.663846770500200, 6.155869338731987, 6.584869543676676, 6.990995104145402, 7.803814161903581, 8.347781212763030, 8.514761952254731, 9.407834310096349, 9.756364540916490, 10.30712359366012, 10.48134117848535, 11.30235807155051, 11.82551347106453, 12.20894236998400, 12.79564274801141, 13.08628911365015, 13.61853684131221

Graph of the $Z$-function along the critical line