Properties

Label 2-317130-1.1-c1-0-26
Degree $2$
Conductor $317130$
Sign $1$
Analytic cond. $2532.29$
Root an. cond. $50.3219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s − 5-s − 6-s − 7-s − 8-s + 9-s + 10-s − 11-s + 12-s − 13-s + 14-s − 15-s + 16-s − 18-s − 4·19-s − 20-s − 21-s + 22-s + 9·23-s − 24-s + 25-s + 26-s + 27-s − 28-s − 3·29-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s − 0.408·6-s − 0.377·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s + 0.288·12-s − 0.277·13-s + 0.267·14-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 0.917·19-s − 0.223·20-s − 0.218·21-s + 0.213·22-s + 1.87·23-s − 0.204·24-s + 1/5·25-s + 0.196·26-s + 0.192·27-s − 0.188·28-s − 0.557·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(2532.29\)
Root analytic conductor: \(50.3219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 317130,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.258055929\)
\(L(\frac12)\) \(\approx\) \(2.258055929\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 + T \)
11 \( 1 + T \)
31 \( 1 \)
good7 \( 1 + T + p T^{2} \) 1.7.b
13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 9 T + p T^{2} \) 1.23.aj
29 \( 1 + 3 T + p T^{2} \) 1.29.d
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 - 5 T + p T^{2} \) 1.43.af
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 2 T + p T^{2} \) 1.67.ac
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.78049820187655, −12.21529814770738, −11.49111244512626, −11.34390855658567, −10.58031252090553, −10.48547549924494, −9.769368946388256, −9.397887733284621, −8.894283439927114, −8.591873007760324, −8.083852781045421, −7.567712315882514, −7.145315259988035, −6.807991102055135, −6.202473094179253, −5.681100200627122, −4.866161069840810, −4.677907984538547, −3.795637589483088, −3.386439951959238, −2.926340906576468, −2.206928221066223, −1.924565459971429, −0.8485493684875970, −0.5514857963823020, 0.5514857963823020, 0.8485493684875970, 1.924565459971429, 2.206928221066223, 2.926340906576468, 3.386439951959238, 3.795637589483088, 4.677907984538547, 4.866161069840810, 5.681100200627122, 6.202473094179253, 6.807991102055135, 7.145315259988035, 7.567712315882514, 8.083852781045421, 8.591873007760324, 8.894283439927114, 9.397887733284621, 9.769368946388256, 10.48547549924494, 10.58031252090553, 11.34390855658567, 11.49111244512626, 12.21529814770738, 12.78049820187655

Graph of the $Z$-function along the critical line