Properties

Label 2-317130-1.1-c1-0-12
Degree $2$
Conductor $317130$
Sign $1$
Analytic cond. $2532.29$
Root an. cond. $50.3219$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s − 5-s + 6-s − 2·7-s − 8-s + 9-s + 10-s − 11-s − 12-s − 2·13-s + 2·14-s + 15-s + 16-s − 18-s − 8·19-s − 20-s + 2·21-s + 22-s − 4·23-s + 24-s + 25-s + 2·26-s − 27-s − 2·28-s + 6·29-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s − 0.755·7-s − 0.353·8-s + 1/3·9-s + 0.316·10-s − 0.301·11-s − 0.288·12-s − 0.554·13-s + 0.534·14-s + 0.258·15-s + 1/4·16-s − 0.235·18-s − 1.83·19-s − 0.223·20-s + 0.436·21-s + 0.213·22-s − 0.834·23-s + 0.204·24-s + 1/5·25-s + 0.392·26-s − 0.192·27-s − 0.377·28-s + 1.11·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(317130\)    =    \(2 \cdot 3 \cdot 5 \cdot 11 \cdot 31^{2}\)
Sign: $1$
Analytic conductor: \(2532.29\)
Root analytic conductor: \(50.3219\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 317130,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.8801134966\)
\(L(\frac12)\) \(\approx\) \(0.8801134966\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 + T \)
11 \( 1 + T \)
31 \( 1 \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 - 14 T + p T^{2} \) 1.89.ao
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.47967337989589, −12.16787659015953, −11.78389997079950, −11.07657673467313, −10.82836821484524, −10.31870349893754, −9.976263673836031, −9.551684404855742, −8.842720656834594, −8.641633745263157, −7.891811386043379, −7.672006351119893, −7.051915694750374, −6.495991544612302, −6.235013707650483, −5.828584751258837, −4.904992829612950, −4.709510884096119, −3.900578728456986, −3.597298278842271, −2.701518317423445, −2.332679823759675, −1.753843976661837, −0.6920158927147031, −0.4353703950742165, 0.4353703950742165, 0.6920158927147031, 1.753843976661837, 2.332679823759675, 2.701518317423445, 3.597298278842271, 3.900578728456986, 4.709510884096119, 4.904992829612950, 5.828584751258837, 6.235013707650483, 6.495991544612302, 7.051915694750374, 7.672006351119893, 7.891811386043379, 8.641633745263157, 8.842720656834594, 9.551684404855742, 9.976263673836031, 10.31870349893754, 10.82836821484524, 11.07657673467313, 11.78389997079950, 12.16787659015953, 12.47967337989589

Graph of the $Z$-function along the critical line