| L(s)  = 1 | − 2-s   − 3-s   + 4-s   − 5-s   + 6-s   − 2·7-s   − 8-s   + 9-s   + 10-s   − 11-s   − 12-s   − 2·13-s   + 2·14-s   + 15-s   + 16-s     − 18-s   − 8·19-s   − 20-s   + 2·21-s   + 22-s   − 4·23-s   + 24-s   + 25-s   + 2·26-s   − 27-s   − 2·28-s   + 6·29-s  + ⋯ | 
| L(s)  = 1 | − 0.707·2-s   − 0.577·3-s   + 1/2·4-s   − 0.447·5-s   + 0.408·6-s   − 0.755·7-s   − 0.353·8-s   + 1/3·9-s   + 0.316·10-s   − 0.301·11-s   − 0.288·12-s   − 0.554·13-s   + 0.534·14-s   + 0.258·15-s   + 1/4·16-s     − 0.235·18-s   − 1.83·19-s   − 0.223·20-s   + 0.436·21-s   + 0.213·22-s   − 0.834·23-s   + 0.204·24-s   + 1/5·25-s   + 0.392·26-s   − 0.192·27-s   − 0.377·28-s   + 1.11·29-s  + ⋯ | 
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 317130 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
  Particular Values
  
  
        
      | \(L(1)\) | \(\approx\) | \(0.8801134966\) | 
    
      | \(L(\frac12)\) | \(\approx\) | \(0.8801134966\) | 
    
        
      | \(L(\frac{3}{2})\) |  | not available | 
    
      | \(L(1)\) |  | not available | 
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
|  | $p$ | $F_p(T)$ | Isogeny Class over $\mathbf{F}_p$ | 
|---|
| bad | 2 | \( 1 + T \) |  | 
|  | 3 | \( 1 + T \) |  | 
|  | 5 | \( 1 + T \) |  | 
|  | 11 | \( 1 + T \) |  | 
|  | 31 | \( 1 \) |  | 
| good | 7 | \( 1 + 2 T + p T^{2} \) | 1.7.c | 
|  | 13 | \( 1 + 2 T + p T^{2} \) | 1.13.c | 
|  | 17 | \( 1 + p T^{2} \) | 1.17.a | 
|  | 19 | \( 1 + 8 T + p T^{2} \) | 1.19.i | 
|  | 23 | \( 1 + 4 T + p T^{2} \) | 1.23.e | 
|  | 29 | \( 1 - 6 T + p T^{2} \) | 1.29.ag | 
|  | 37 | \( 1 + 2 T + p T^{2} \) | 1.37.c | 
|  | 41 | \( 1 - 10 T + p T^{2} \) | 1.41.ak | 
|  | 43 | \( 1 - 4 T + p T^{2} \) | 1.43.ae | 
|  | 47 | \( 1 + 4 T + p T^{2} \) | 1.47.e | 
|  | 53 | \( 1 - 4 T + p T^{2} \) | 1.53.ae | 
|  | 59 | \( 1 - 6 T + p T^{2} \) | 1.59.ag | 
|  | 61 | \( 1 + p T^{2} \) | 1.61.a | 
|  | 67 | \( 1 + 2 T + p T^{2} \) | 1.67.c | 
|  | 71 | \( 1 - 14 T + p T^{2} \) | 1.71.ao | 
|  | 73 | \( 1 + 14 T + p T^{2} \) | 1.73.o | 
|  | 79 | \( 1 - 12 T + p T^{2} \) | 1.79.am | 
|  | 83 | \( 1 - 16 T + p T^{2} \) | 1.83.aq | 
|  | 89 | \( 1 - 14 T + p T^{2} \) | 1.89.ao | 
|  | 97 | \( 1 - 6 T + p T^{2} \) | 1.97.ag | 
| show more |  | 
| show less |  | 
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−12.47967337989589, −12.16787659015953, −11.78389997079950, −11.07657673467313, −10.82836821484524, −10.31870349893754, −9.976263673836031, −9.551684404855742, −8.842720656834594, −8.641633745263157, −7.891811386043379, −7.672006351119893, −7.051915694750374, −6.495991544612302, −6.235013707650483, −5.828584751258837, −4.904992829612950, −4.709510884096119, −3.900578728456986, −3.597298278842271, −2.701518317423445, −2.332679823759675, −1.753843976661837, −0.6920158927147031, −0.4353703950742165, 
0.4353703950742165, 0.6920158927147031, 1.753843976661837, 2.332679823759675, 2.701518317423445, 3.597298278842271, 3.900578728456986, 4.709510884096119, 4.904992829612950, 5.828584751258837, 6.235013707650483, 6.495991544612302, 7.051915694750374, 7.672006351119893, 7.891811386043379, 8.641633745263157, 8.842720656834594, 9.551684404855742, 9.976263673836031, 10.31870349893754, 10.82836821484524, 11.07657673467313, 11.78389997079950, 12.16787659015953, 12.47967337989589
