Properties

Label 2-309680-1.1-c1-0-28
Degree $2$
Conductor $309680$
Sign $-1$
Analytic cond. $2472.80$
Root an. cond. $49.7273$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s − 2·9-s − 5·11-s + 2·13-s − 15-s − 3·17-s + 19-s − 6·23-s + 25-s − 5·27-s − 10·29-s − 31-s − 5·33-s − 5·37-s + 2·39-s + 6·41-s − 7·43-s + 2·45-s − 9·47-s − 3·51-s + 5·53-s + 5·55-s + 57-s + 10·59-s − 4·61-s − 2·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s − 2/3·9-s − 1.50·11-s + 0.554·13-s − 0.258·15-s − 0.727·17-s + 0.229·19-s − 1.25·23-s + 1/5·25-s − 0.962·27-s − 1.85·29-s − 0.179·31-s − 0.870·33-s − 0.821·37-s + 0.320·39-s + 0.937·41-s − 1.06·43-s + 0.298·45-s − 1.31·47-s − 0.420·51-s + 0.686·53-s + 0.674·55-s + 0.132·57-s + 1.30·59-s − 0.512·61-s − 0.248·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 309680 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(309680\)    =    \(2^{4} \cdot 5 \cdot 7^{2} \cdot 79\)
Sign: $-1$
Analytic conductor: \(2472.80\)
Root analytic conductor: \(49.7273\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 309680,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
7 \( 1 \)
79 \( 1 - T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 5 T + p T^{2} \) 1.11.f
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + 3 T + p T^{2} \) 1.17.d
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 5 T + p T^{2} \) 1.37.f
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 5 T + p T^{2} \) 1.53.af
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 + 3 T + p T^{2} \) 1.89.d
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.96137305471679, −12.58051319717467, −11.81982731462500, −11.54008840026769, −11.03912735286936, −10.70621762161218, −10.14558995482178, −9.622818517692031, −9.195798048165954, −8.582770673623780, −8.281811151378839, −7.885456362176840, −7.480987349867885, −6.934393981021661, −6.287255723773591, −5.775004554544517, −5.308268805003770, −4.925792398073003, −4.117209226640642, −3.650432347137679, −3.312724357351465, −2.585046745965621, −2.145297911901747, −1.679292439162684, −0.5251907555532684, 0, 0.5251907555532684, 1.679292439162684, 2.145297911901747, 2.585046745965621, 3.312724357351465, 3.650432347137679, 4.117209226640642, 4.925792398073003, 5.308268805003770, 5.775004554544517, 6.287255723773591, 6.934393981021661, 7.480987349867885, 7.885456362176840, 8.281811151378839, 8.582770673623780, 9.195798048165954, 9.622818517692031, 10.14558995482178, 10.70621762161218, 11.03912735286936, 11.54008840026769, 11.81982731462500, 12.58051319717467, 12.96137305471679

Graph of the $Z$-function along the critical line