Properties

Label 2-296208-1.1-c1-0-113
Degree $2$
Conductor $296208$
Sign $-1$
Analytic cond. $2365.23$
Root an. cond. $48.6336$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 4·7-s + 13-s + 17-s − 19-s − 6·23-s − 5·25-s − 4·29-s − 4·31-s − 12·37-s + 2·41-s + 43-s + 47-s + 9·49-s + 6·53-s + 12·59-s + 6·61-s − 3·67-s − 4·71-s + 10·73-s + 4·79-s + 5·83-s + 13·89-s + 4·91-s − 6·97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  + 1.51·7-s + 0.277·13-s + 0.242·17-s − 0.229·19-s − 1.25·23-s − 25-s − 0.742·29-s − 0.718·31-s − 1.97·37-s + 0.312·41-s + 0.152·43-s + 0.145·47-s + 9/7·49-s + 0.824·53-s + 1.56·59-s + 0.768·61-s − 0.366·67-s − 0.474·71-s + 1.17·73-s + 0.450·79-s + 0.548·83-s + 1.37·89-s + 0.419·91-s − 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296208 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296208\)    =    \(2^{4} \cdot 3^{2} \cdot 11^{2} \cdot 17\)
Sign: $-1$
Analytic conductor: \(2365.23\)
Root analytic conductor: \(48.6336\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296208,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
17 \( 1 - T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - 4 T + p T^{2} \) 1.7.ae
13 \( 1 - T + p T^{2} \) 1.13.ab
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 12 T + p T^{2} \) 1.37.m
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - T + p T^{2} \) 1.43.ab
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 3 T + p T^{2} \) 1.67.d
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - 13 T + p T^{2} \) 1.89.an
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.99762390112716, −12.27066924708741, −11.93011205017917, −11.68335187090008, −11.02238700391127, −10.74347245223827, −10.28046744912940, −9.708593825374859, −9.255480930132117, −8.554949134859913, −8.383612340946375, −7.846082242024076, −7.417508154049021, −6.974141584005000, −6.304746128048023, −5.649477132309495, −5.434133857406890, −4.903081973003504, −4.235626482531274, −3.799903744129547, −3.454504508209714, −2.361800660212266, −2.026044826405260, −1.604249693279683, −0.8276884217441236, 0, 0.8276884217441236, 1.604249693279683, 2.026044826405260, 2.361800660212266, 3.454504508209714, 3.799903744129547, 4.235626482531274, 4.903081973003504, 5.434133857406890, 5.649477132309495, 6.304746128048023, 6.974141584005000, 7.417508154049021, 7.846082242024076, 8.383612340946375, 8.554949134859913, 9.255480930132117, 9.708593825374859, 10.28046744912940, 10.74347245223827, 11.02238700391127, 11.68335187090008, 11.93011205017917, 12.27066924708741, 12.99762390112716

Graph of the $Z$-function along the critical line