Properties

Label 2-296-1.1-c1-0-7
Degree $2$
Conductor $296$
Sign $-1$
Analytic cond. $2.36357$
Root an. cond. $1.53739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 7-s − 2·9-s + 11-s − 6·13-s + 2·15-s − 4·17-s − 8·19-s − 21-s + 6·23-s − 25-s + 5·27-s + 2·29-s − 4·31-s − 33-s − 2·35-s − 37-s + 6·39-s + 7·41-s + 2·43-s + 4·45-s + 9·47-s − 6·49-s + 4·51-s − 3·53-s − 2·55-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 0.377·7-s − 2/3·9-s + 0.301·11-s − 1.66·13-s + 0.516·15-s − 0.970·17-s − 1.83·19-s − 0.218·21-s + 1.25·23-s − 1/5·25-s + 0.962·27-s + 0.371·29-s − 0.718·31-s − 0.174·33-s − 0.338·35-s − 0.164·37-s + 0.960·39-s + 1.09·41-s + 0.304·43-s + 0.596·45-s + 1.31·47-s − 6/7·49-s + 0.560·51-s − 0.412·53-s − 0.269·55-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 296 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(296\)    =    \(2^{3} \cdot 37\)
Sign: $-1$
Analytic conductor: \(2.36357\)
Root analytic conductor: \(1.53739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 296,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
37 \( 1 + T \)
good3 \( 1 + T + p T^{2} \)
5 \( 1 + 2 T + p T^{2} \)
7 \( 1 - T + p T^{2} \)
11 \( 1 - T + p T^{2} \)
13 \( 1 + 6 T + p T^{2} \)
17 \( 1 + 4 T + p T^{2} \)
19 \( 1 + 8 T + p T^{2} \)
23 \( 1 - 6 T + p T^{2} \)
29 \( 1 - 2 T + p T^{2} \)
31 \( 1 + 4 T + p T^{2} \)
41 \( 1 - 7 T + p T^{2} \)
43 \( 1 - 2 T + p T^{2} \)
47 \( 1 - 9 T + p T^{2} \)
53 \( 1 + 3 T + p T^{2} \)
59 \( 1 + 12 T + p T^{2} \)
61 \( 1 - 4 T + p T^{2} \)
67 \( 1 + p T^{2} \)
71 \( 1 - 7 T + p T^{2} \)
73 \( 1 - 7 T + p T^{2} \)
79 \( 1 + p T^{2} \)
83 \( 1 - 3 T + p T^{2} \)
89 \( 1 + 12 T + p T^{2} \)
97 \( 1 + 8 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−11.19524954917795404395655592484, −10.78391283975406205668829665843, −9.314280646871158472315859842620, −8.404519639968086535147674204319, −7.36881114003389544173968798730, −6.40622823243653800847643763088, −5.06148787959059824431190870012, −4.21402845745683233262500412192, −2.50673634667839885265978774188, 0, 2.50673634667839885265978774188, 4.21402845745683233262500412192, 5.06148787959059824431190870012, 6.40622823243653800847643763088, 7.36881114003389544173968798730, 8.404519639968086535147674204319, 9.314280646871158472315859842620, 10.78391283975406205668829665843, 11.19524954917795404395655592484

Graph of the $Z$-function along the critical line