Properties

Label 2-286650-1.1-c1-0-125
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s − 2·11-s − 13-s + 16-s − 6·17-s + 6·19-s − 2·22-s + 4·23-s − 26-s − 4·31-s + 32-s − 6·34-s − 6·37-s + 6·38-s + 10·41-s + 8·43-s − 2·44-s + 4·46-s + 8·47-s − 52-s + 6·53-s + 8·59-s + 8·61-s − 4·62-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s − 0.603·11-s − 0.277·13-s + 1/4·16-s − 1.45·17-s + 1.37·19-s − 0.426·22-s + 0.834·23-s − 0.196·26-s − 0.718·31-s + 0.176·32-s − 1.02·34-s − 0.986·37-s + 0.973·38-s + 1.56·41-s + 1.21·43-s − 0.301·44-s + 0.589·46-s + 1.16·47-s − 0.138·52-s + 0.824·53-s + 1.04·59-s + 1.02·61-s − 0.508·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.207955908\)
\(L(\frac12)\) \(\approx\) \(4.207955908\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 8 T + p T^{2} \) 1.61.ai
67 \( 1 + 2 T + p T^{2} \) 1.67.c
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 18 T + p T^{2} \) 1.83.as
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.88763878237703, −12.24208381544413, −11.94028765772099, −11.25998789017219, −11.09744152077210, −10.45880921794693, −10.20029567406485, −9.357543033045951, −9.099882368085011, −8.654606587260959, −7.925227022638206, −7.376809395425832, −7.175397336800808, −6.681719569747381, −5.914097785016035, −5.585401620507324, −5.132579321317645, −4.586331686617259, −4.102050554999681, −3.571298219658855, −2.906228606558707, −2.459587199270431, −2.015454238234009, −1.113341088064929, −0.5119954021534653, 0.5119954021534653, 1.113341088064929, 2.015454238234009, 2.459587199270431, 2.906228606558707, 3.571298219658855, 4.102050554999681, 4.586331686617259, 5.132579321317645, 5.585401620507324, 5.914097785016035, 6.681719569747381, 7.175397336800808, 7.376809395425832, 7.925227022638206, 8.654606587260959, 9.099882368085011, 9.357543033045951, 10.20029567406485, 10.45880921794693, 11.09744152077210, 11.25998789017219, 11.94028765772099, 12.24208381544413, 12.88763878237703

Graph of the $Z$-function along the critical line