Properties

Label 2-286650-1.1-c1-0-109
Degree $2$
Conductor $286650$
Sign $1$
Analytic cond. $2288.91$
Root an. cond. $47.8425$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 8-s + 6·11-s + 13-s + 16-s − 6·19-s + 6·22-s + 6·23-s + 26-s − 2·29-s − 4·31-s + 32-s − 10·37-s − 6·38-s − 6·41-s − 8·43-s + 6·44-s + 6·46-s − 8·47-s + 52-s − 6·53-s − 2·58-s + 10·59-s + 6·61-s − 4·62-s + 64-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.353·8-s + 1.80·11-s + 0.277·13-s + 1/4·16-s − 1.37·19-s + 1.27·22-s + 1.25·23-s + 0.196·26-s − 0.371·29-s − 0.718·31-s + 0.176·32-s − 1.64·37-s − 0.973·38-s − 0.937·41-s − 1.21·43-s + 0.904·44-s + 0.884·46-s − 1.16·47-s + 0.138·52-s − 0.824·53-s − 0.262·58-s + 1.30·59-s + 0.768·61-s − 0.508·62-s + 1/8·64-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 286650 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(286650\)    =    \(2 \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(2288.91\)
Root analytic conductor: \(47.8425\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 286650,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.238585375\)
\(L(\frac12)\) \(\approx\) \(4.238585375\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 4 T + p T^{2} \) 1.31.e
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 10 T + p T^{2} \) 1.59.ak
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.72391796529751, −12.28861243726792, −11.90069238879412, −11.35655482360708, −11.00648568294543, −10.68554581539732, −9.844699368232491, −9.648499388273689, −8.918828132843723, −8.536021700078591, −8.280414536243214, −7.348331132206486, −6.871240787781435, −6.631206375387766, −6.260707335154755, −5.539922115285467, −5.021745323256448, −4.651113290860570, −3.886662188726804, −3.616290513714777, −3.233388904673973, −2.320638885734777, −1.729357786123443, −1.400804370488754, −0.4684893266228026, 0.4684893266228026, 1.400804370488754, 1.729357786123443, 2.320638885734777, 3.233388904673973, 3.616290513714777, 3.886662188726804, 4.651113290860570, 5.021745323256448, 5.539922115285467, 6.260707335154755, 6.631206375387766, 6.871240787781435, 7.348331132206486, 8.280414536243214, 8.536021700078591, 8.918828132843723, 9.648499388273689, 9.844699368232491, 10.68554581539732, 11.00648568294543, 11.35655482360708, 11.90069238879412, 12.28861243726792, 12.72391796529751

Graph of the $Z$-function along the critical line