Properties

Label 2-280e2-1.1-c1-0-134
Degree $2$
Conductor $78400$
Sign $1$
Analytic cond. $626.027$
Root an. cond. $25.0205$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3·3-s + 6·9-s − 11-s − 4·13-s + 5·17-s + 19-s + 2·23-s + 9·27-s + 8·29-s − 10·31-s − 3·33-s − 6·37-s − 12·39-s + 3·41-s + 4·43-s + 4·47-s + 15·51-s + 6·53-s + 3·57-s + 8·59-s + 10·61-s − 67-s + 6·69-s − 12·71-s + 3·73-s + 6·79-s + 9·81-s + ⋯
L(s)  = 1  + 1.73·3-s + 2·9-s − 0.301·11-s − 1.10·13-s + 1.21·17-s + 0.229·19-s + 0.417·23-s + 1.73·27-s + 1.48·29-s − 1.79·31-s − 0.522·33-s − 0.986·37-s − 1.92·39-s + 0.468·41-s + 0.609·43-s + 0.583·47-s + 2.10·51-s + 0.824·53-s + 0.397·57-s + 1.04·59-s + 1.28·61-s − 0.122·67-s + 0.722·69-s − 1.42·71-s + 0.351·73-s + 0.675·79-s + 81-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 78400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(78400\)    =    \(2^{6} \cdot 5^{2} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(626.027\)
Root analytic conductor: \(25.0205\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 78400,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.407680074\)
\(L(\frac12)\) \(\approx\) \(5.407680074\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 \)
good3 \( 1 - p T + p T^{2} \) 1.3.ad
11 \( 1 + T + p T^{2} \) 1.11.b
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 - 5 T + p T^{2} \) 1.17.af
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 - 2 T + p T^{2} \) 1.23.ac
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 + 10 T + p T^{2} \) 1.31.k
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 3 T + p T^{2} \) 1.41.ad
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + T + p T^{2} \) 1.67.b
71 \( 1 + 12 T + p T^{2} \) 1.71.m
73 \( 1 - 3 T + p T^{2} \) 1.73.ad
79 \( 1 - 6 T + p T^{2} \) 1.79.ag
83 \( 1 - 13 T + p T^{2} \) 1.83.an
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.21520763856716, −13.56568832278227, −13.17984202348434, −12.54751642730167, −12.24284667029749, −11.70883028409900, −10.78069935062193, −10.34770385251737, −9.908386116164001, −9.396444246435909, −8.956305326520192, −8.482677668029123, −7.866998690892141, −7.490462915806019, −7.120859283835680, −6.489813741180604, −5.385283639285039, −5.261376211508720, −4.344847661149915, −3.792506968307078, −3.268017292575485, −2.655855881054588, −2.269357264021972, −1.490957144088998, −0.6775058644739289, 0.6775058644739289, 1.490957144088998, 2.269357264021972, 2.655855881054588, 3.268017292575485, 3.792506968307078, 4.344847661149915, 5.261376211508720, 5.385283639285039, 6.489813741180604, 7.120859283835680, 7.490462915806019, 7.866998690892141, 8.482677668029123, 8.956305326520192, 9.396444246435909, 9.908386116164001, 10.34770385251737, 10.78069935062193, 11.70883028409900, 12.24284667029749, 12.54751642730167, 13.17984202348434, 13.56568832278227, 14.21520763856716

Graph of the $Z$-function along the critical line