Properties

Label 2-2646-1.1-c1-0-19
Degree $2$
Conductor $2646$
Sign $1$
Analytic cond. $21.1284$
Root an. cond. $4.59656$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 3·5-s − 8-s − 3·10-s + 4·13-s + 16-s + 6·17-s + 4·19-s + 3·20-s − 6·23-s + 4·25-s − 4·26-s + 3·29-s − 8·31-s − 32-s − 6·34-s + 8·37-s − 4·38-s − 3·40-s − 6·41-s + 8·43-s + 6·46-s + 6·47-s − 4·50-s + 4·52-s − 9·53-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 1.34·5-s − 0.353·8-s − 0.948·10-s + 1.10·13-s + 1/4·16-s + 1.45·17-s + 0.917·19-s + 0.670·20-s − 1.25·23-s + 4/5·25-s − 0.784·26-s + 0.557·29-s − 1.43·31-s − 0.176·32-s − 1.02·34-s + 1.31·37-s − 0.648·38-s − 0.474·40-s − 0.937·41-s + 1.21·43-s + 0.884·46-s + 0.875·47-s − 0.565·50-s + 0.554·52-s − 1.23·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2646 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2646\)    =    \(2 \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(21.1284\)
Root analytic conductor: \(4.59656\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 2646,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.934749980\)
\(L(\frac12)\) \(\approx\) \(1.934749980\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 - 3 T + p T^{2} \) 1.5.ad
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 - 17 T + p T^{2} \) 1.79.ar
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.080307510754945695338223626417, −8.089162467985480210563653789876, −7.53555940761379996453814684424, −6.44746236575269500243043966102, −5.85181888271394769605901931939, −5.34295331715232478556650999545, −3.89746653429416377815915424510, −2.94211773623874109816859654251, −1.86269570359270794591117296706, −1.05404344222439955836076699282, 1.05404344222439955836076699282, 1.86269570359270794591117296706, 2.94211773623874109816859654251, 3.89746653429416377815915424510, 5.34295331715232478556650999545, 5.85181888271394769605901931939, 6.44746236575269500243043966102, 7.53555940761379996453814684424, 8.089162467985480210563653789876, 9.080307510754945695338223626417

Graph of the $Z$-function along the critical line