Properties

Label 2-259e2-1.1-c1-0-4
Degree $2$
Conductor $67081$
Sign $-1$
Analytic cond. $535.644$
Root an. cond. $23.1439$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 2·4-s − 3·5-s + 9-s + 3·11-s + 4·12-s − 3·13-s + 6·15-s + 4·16-s − 6·17-s + 6·20-s + 6·23-s + 4·25-s + 4·27-s + 6·29-s − 3·31-s − 6·33-s − 2·36-s + 6·39-s − 12·43-s − 6·44-s − 3·45-s + 6·47-s − 8·48-s + 12·51-s + 6·52-s + 9·53-s + ⋯
L(s)  = 1  − 1.15·3-s − 4-s − 1.34·5-s + 1/3·9-s + 0.904·11-s + 1.15·12-s − 0.832·13-s + 1.54·15-s + 16-s − 1.45·17-s + 1.34·20-s + 1.25·23-s + 4/5·25-s + 0.769·27-s + 1.11·29-s − 0.538·31-s − 1.04·33-s − 1/3·36-s + 0.960·39-s − 1.82·43-s − 0.904·44-s − 0.447·45-s + 0.875·47-s − 1.15·48-s + 1.68·51-s + 0.832·52-s + 1.23·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 67081 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(67081\)    =    \(7^{2} \cdot 37^{2}\)
Sign: $-1$
Analytic conductor: \(535.644\)
Root analytic conductor: \(23.1439\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 67081,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad7 \( 1 \)
37 \( 1 \)
good2 \( 1 + p T^{2} \) 1.2.a
3 \( 1 + 2 T + p T^{2} \) 1.3.c
5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 3 T + p T^{2} \) 1.13.d
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 3 T + p T^{2} \) 1.31.d
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 - 3 T + p T^{2} \) 1.71.ad
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 15 T + p T^{2} \) 1.97.ap
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.58055093087565, −13.89050632350212, −13.32942681086732, −12.86177357329599, −12.19644972533355, −11.95756114201191, −11.54001105684171, −11.02014561525269, −10.48344648055168, −10.01169346884110, −9.176810282499253, −8.748096317495685, −8.529600011806021, −7.551488438673009, −7.269640445415855, −6.511051324302911, −6.216149475444301, −5.170654792117233, −4.937091359336038, −4.451898553632142, −3.899439857086371, −3.309714185389321, −2.484996163367379, −1.302725811550292, −0.5816150709979061, 0, 0.5816150709979061, 1.302725811550292, 2.484996163367379, 3.309714185389321, 3.899439857086371, 4.451898553632142, 4.937091359336038, 5.170654792117233, 6.216149475444301, 6.511051324302911, 7.269640445415855, 7.551488438673009, 8.529600011806021, 8.748096317495685, 9.176810282499253, 10.01169346884110, 10.48344648055168, 11.02014561525269, 11.54001105684171, 11.95756114201191, 12.19644972533355, 12.86177357329599, 13.32942681086732, 13.89050632350212, 14.58055093087565

Graph of the $Z$-function along the critical line