Properties

Label 2-248430-1.1-c1-0-117
Degree $2$
Conductor $248430$
Sign $1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 3-s + 4-s + 5-s − 6-s − 8-s + 9-s − 10-s + 2·11-s + 12-s + 15-s + 16-s − 18-s + 20-s − 2·22-s − 24-s + 25-s + 27-s − 30-s + 2·31-s − 32-s + 2·33-s + 36-s + 8·37-s − 40-s + 10·41-s + 2·43-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s + 0.603·11-s + 0.288·12-s + 0.258·15-s + 1/4·16-s − 0.235·18-s + 0.223·20-s − 0.426·22-s − 0.204·24-s + 1/5·25-s + 0.192·27-s − 0.182·30-s + 0.359·31-s − 0.176·32-s + 0.348·33-s + 1/6·36-s + 1.31·37-s − 0.158·40-s + 1.56·41-s + 0.304·43-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.725153926\)
\(L(\frac12)\) \(\approx\) \(3.725153926\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 - T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 - 2 T + p T^{2} \) 1.11.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 6 T + p T^{2} \) 1.67.ag
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 16 T + p T^{2} \) 1.83.q
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.81122987904953, −12.52532837776235, −11.80202928069894, −11.35489558032349, −11.07441326670215, −10.32376965819419, −9.997127009419059, −9.591329758365577, −9.028077578023962, −8.874313372926245, −8.130869723143694, −7.826096805347162, −7.293305075036236, −6.739494920981345, −6.300013514021146, −5.847743599767504, −5.235480218001119, −4.508968645587107, −4.101922856839794, −3.396433348514739, −2.897968566855505, −2.233309129088555, −1.899908607989532, −1.014824706777865, −0.6652898962858526, 0.6652898962858526, 1.014824706777865, 1.899908607989532, 2.233309129088555, 2.897968566855505, 3.396433348514739, 4.101922856839794, 4.508968645587107, 5.235480218001119, 5.847743599767504, 6.300013514021146, 6.739494920981345, 7.293305075036236, 7.826096805347162, 8.130869723143694, 8.874313372926245, 9.028077578023962, 9.591329758365577, 9.997127009419059, 10.32376965819419, 11.07441326670215, 11.35489558032349, 11.80202928069894, 12.52532837776235, 12.81122987904953

Graph of the $Z$-function along the critical line