Properties

Label 2-248430-1.1-c1-0-103
Degree $2$
Conductor $248430$
Sign $-1$
Analytic cond. $1983.72$
Root an. cond. $44.5390$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 3·11-s − 12-s − 15-s + 16-s − 18-s − 5·19-s + 20-s + 3·22-s + 6·23-s + 24-s + 25-s − 27-s − 6·29-s + 30-s + 7·31-s − 32-s + 3·33-s + 36-s − 4·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.904·11-s − 0.288·12-s − 0.258·15-s + 1/4·16-s − 0.235·18-s − 1.14·19-s + 0.223·20-s + 0.639·22-s + 1.25·23-s + 0.204·24-s + 1/5·25-s − 0.192·27-s − 1.11·29-s + 0.182·30-s + 1.25·31-s − 0.176·32-s + 0.522·33-s + 1/6·36-s − 0.657·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 248430 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(248430\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13^{2}\)
Sign: $-1$
Analytic conductor: \(1983.72\)
Root analytic conductor: \(44.5390\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 248430,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 \)
good11 \( 1 + 3 T + p T^{2} \) 1.11.d
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 7 T + p T^{2} \) 1.67.h
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 10 T + p T^{2} \) 1.79.k
83 \( 1 - 12 T + p T^{2} \) 1.83.am
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05033334392464, −12.61083580031876, −12.06220750722210, −11.71023092618224, −10.98257246238105, −10.70222219904722, −10.47644336607912, −9.860797500249256, −9.427456679341262, −8.904205467223496, −8.445738854935667, −8.014062941055955, −7.311746856299670, −7.071143970568787, −6.414472093947133, −6.041637925923837, −5.495495233834082, −4.977004518951128, −4.540068904184194, −3.828081107420511, −3.033327806334227, −2.673501901173879, −1.901385589687557, −1.482117214951421, −0.6375212157332078, 0, 0.6375212157332078, 1.482117214951421, 1.901385589687557, 2.673501901173879, 3.033327806334227, 3.828081107420511, 4.540068904184194, 4.977004518951128, 5.495495233834082, 6.041637925923837, 6.414472093947133, 7.071143970568787, 7.311746856299670, 8.014062941055955, 8.445738854935667, 8.904205467223496, 9.427456679341262, 9.860797500249256, 10.47644336607912, 10.70222219904722, 10.98257246238105, 11.71023092618224, 12.06220750722210, 12.61083580031876, 13.05033334392464

Graph of the $Z$-function along the critical line