Properties

Label 2-244800-1.1-c1-0-138
Degree $2$
Conductor $244800$
Sign $1$
Analytic cond. $1954.73$
Root an. cond. $44.2124$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 6·11-s + 2·13-s − 17-s + 8·19-s − 4·23-s + 6·29-s + 10·31-s − 6·37-s + 10·41-s − 2·43-s − 6·47-s − 7·49-s + 10·53-s − 2·61-s − 10·67-s − 14·71-s + 6·73-s + 10·79-s + 14·83-s + 10·89-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 1.80·11-s + 0.554·13-s − 0.242·17-s + 1.83·19-s − 0.834·23-s + 1.11·29-s + 1.79·31-s − 0.986·37-s + 1.56·41-s − 0.304·43-s − 0.875·47-s − 49-s + 1.37·53-s − 0.256·61-s − 1.22·67-s − 1.66·71-s + 0.702·73-s + 1.12·79-s + 1.53·83-s + 1.05·89-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 244800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(244800\)    =    \(2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 17\)
Sign: $1$
Analytic conductor: \(1954.73\)
Root analytic conductor: \(44.2124\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 244800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.396689446\)
\(L(\frac12)\) \(\approx\) \(2.396689446\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
17 \( 1 + T \)
good7 \( 1 + p T^{2} \) 1.7.a
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 14 T + p T^{2} \) 1.71.o
73 \( 1 - 6 T + p T^{2} \) 1.73.ag
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 10 T + p T^{2} \) 1.89.ak
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.02775695870746, −12.32488355846916, −11.85333246616633, −11.69102719750611, −10.90201296859289, −10.50060761654204, −10.16115682547456, −9.737540663492299, −9.161412209039272, −8.553119308274101, −8.120180448925674, −7.733667954202136, −7.370393371750062, −6.654371887064986, −6.127565989561395, −5.734626911618013, −4.963488305254445, −4.912190042772617, −4.159898907097029, −3.384356625546494, −2.991954472996044, −2.519653055560614, −1.837883796275881, −1.023914487509259, −0.4810421280698036, 0.4810421280698036, 1.023914487509259, 1.837883796275881, 2.519653055560614, 2.991954472996044, 3.384356625546494, 4.159898907097029, 4.912190042772617, 4.963488305254445, 5.734626911618013, 6.127565989561395, 6.654371887064986, 7.370393371750062, 7.733667954202136, 8.120180448925674, 8.553119308274101, 9.161412209039272, 9.737540663492299, 10.16115682547456, 10.50060761654204, 10.90201296859289, 11.69102719750611, 11.85333246616633, 12.32488355846916, 13.02775695870746

Graph of the $Z$-function along the critical line