Properties

Label 244800.ii
Number of curves $2$
Conductor $244800$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ii1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 244800.ii have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 4 T + 23 T^{2}\) 1.23.e
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244800.ii do not have complex multiplication.

Modular form 244800.2.a.ii

Copy content sage:E.q_eigenform(10)
 
\(q - 6 q^{11} + 2 q^{13} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 244800.ii

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244800.ii1 244800ii1 \([0, 0, 0, -22800, 1253000]\) \(112377856/6885\) \(80306640000000\) \([2]\) \(884736\) \(1.4200\) \(\Gamma_0(N)\)-optimal
244800.ii2 244800ii2 \([0, 0, 0, 17700, 5222000]\) \(3286064/65025\) \(-12135225600000000\) \([2]\) \(1769472\) \(1.7666\)