Properties

Label 2-2320-1.1-c1-0-23
Degree $2$
Conductor $2320$
Sign $-1$
Analytic cond. $18.5252$
Root an. cond. $4.30410$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·3-s − 5-s − 4·7-s + 9-s + 6·13-s + 2·15-s + 8·21-s + 8·23-s + 25-s + 4·27-s − 29-s − 8·31-s + 4·35-s − 12·39-s + 6·41-s + 2·43-s − 45-s + 2·47-s + 9·49-s − 6·53-s − 12·59-s − 6·61-s − 4·63-s − 6·65-s − 16·67-s − 16·69-s + 4·73-s + ⋯
L(s)  = 1  − 1.15·3-s − 0.447·5-s − 1.51·7-s + 1/3·9-s + 1.66·13-s + 0.516·15-s + 1.74·21-s + 1.66·23-s + 1/5·25-s + 0.769·27-s − 0.185·29-s − 1.43·31-s + 0.676·35-s − 1.92·39-s + 0.937·41-s + 0.304·43-s − 0.149·45-s + 0.291·47-s + 9/7·49-s − 0.824·53-s − 1.56·59-s − 0.768·61-s − 0.503·63-s − 0.744·65-s − 1.95·67-s − 1.92·69-s + 0.468·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 2320 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(2320\)    =    \(2^{4} \cdot 5 \cdot 29\)
Sign: $-1$
Analytic conductor: \(18.5252\)
Root analytic conductor: \(4.30410\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 2320,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 + T \)
29 \( 1 + T \)
good3 \( 1 + 2 T + p T^{2} \) 1.3.c
7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + p T^{2} \) 1.37.a
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 2 T + p T^{2} \) 1.43.ac
47 \( 1 - 2 T + p T^{2} \) 1.47.ac
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 4 T + p T^{2} \) 1.73.ae
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 8 T + p T^{2} \) 1.83.i
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 8 T + p T^{2} \) 1.97.ai
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.937132373963094918098131062866, −7.65300759320240801334039199640, −6.85193771012451657253517149866, −6.16896013879507699937469003155, −5.73359443936300595868147392633, −4.67040862570166046478650993910, −3.62782408323068056564266888657, −2.99746001243481172043393830968, −1.15339555479317514330126356504, 0, 1.15339555479317514330126356504, 2.99746001243481172043393830968, 3.62782408323068056564266888657, 4.67040862570166046478650993910, 5.73359443936300595868147392633, 6.16896013879507699937469003155, 6.85193771012451657253517149866, 7.65300759320240801334039199640, 8.937132373963094918098131062866

Graph of the $Z$-function along the critical line