Properties

Label 2-23100-1.1-c1-0-7
Degree $2$
Conductor $23100$
Sign $1$
Analytic cond. $184.454$
Root an. cond. $13.5814$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 11-s − 4·13-s − 2·17-s − 6·19-s + 21-s + 4·23-s + 27-s − 4·29-s − 33-s − 6·37-s − 4·39-s + 8·43-s + 4·47-s + 49-s − 2·51-s + 6·53-s − 6·57-s + 4·59-s + 6·61-s + 63-s + 4·67-s + 4·69-s − 77-s − 6·79-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s − 1.10·13-s − 0.485·17-s − 1.37·19-s + 0.218·21-s + 0.834·23-s + 0.192·27-s − 0.742·29-s − 0.174·33-s − 0.986·37-s − 0.640·39-s + 1.21·43-s + 0.583·47-s + 1/7·49-s − 0.280·51-s + 0.824·53-s − 0.794·57-s + 0.520·59-s + 0.768·61-s + 0.125·63-s + 0.488·67-s + 0.481·69-s − 0.113·77-s − 0.675·79-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(184.454\)
Root analytic conductor: \(13.5814\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.096818489\)
\(L(\frac12)\) \(\approx\) \(2.096818489\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 + 6 T + p T^{2} \) 1.19.g
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + 4 T + p T^{2} \) 1.29.e
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 + 6 T + p T^{2} \) 1.79.g
83 \( 1 + 14 T + p T^{2} \) 1.83.o
89 \( 1 + 2 T + p T^{2} \) 1.89.c
97 \( 1 - 14 T + p T^{2} \) 1.97.ao
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40433504719545, −14.91626312933079, −14.39403935784813, −14.04410772772613, −13.15077969544819, −12.90348684206091, −12.36148942876730, −11.63621738198747, −11.07851167481854, −10.45175087194917, −10.06717468059672, −9.220993005015920, −8.852681375747513, −8.296338641013856, −7.594243805222177, −7.117388250411131, −6.592347023219778, −5.639594607901416, −5.125318715039172, −4.358066152776124, −3.929322346539789, −2.909983328992262, −2.346601394894104, −1.755802403486283, −0.5398995633505966, 0.5398995633505966, 1.755802403486283, 2.346601394894104, 2.909983328992262, 3.929322346539789, 4.358066152776124, 5.125318715039172, 5.639594607901416, 6.592347023219778, 7.117388250411131, 7.594243805222177, 8.296338641013856, 8.852681375747513, 9.220993005015920, 10.06717468059672, 10.45175087194917, 11.07851167481854, 11.63621738198747, 12.36148942876730, 12.90348684206091, 13.15077969544819, 14.04410772772613, 14.39403935784813, 14.91626312933079, 15.40433504719545

Graph of the $Z$-function along the critical line