Properties

Label 2-23100-1.1-c1-0-11
Degree $2$
Conductor $23100$
Sign $1$
Analytic cond. $184.454$
Root an. cond. $13.5814$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s + 7-s + 9-s − 11-s − 13-s + 4·17-s + 3·19-s + 21-s − 2·23-s + 27-s + 5·29-s − 33-s − 9·37-s − 39-s − 10·43-s − 5·47-s + 49-s + 4·51-s + 6·53-s + 3·57-s + 13·59-s + 6·61-s + 63-s + 67-s − 2·69-s + 9·73-s − 77-s + ⋯
L(s)  = 1  + 0.577·3-s + 0.377·7-s + 1/3·9-s − 0.301·11-s − 0.277·13-s + 0.970·17-s + 0.688·19-s + 0.218·21-s − 0.417·23-s + 0.192·27-s + 0.928·29-s − 0.174·33-s − 1.47·37-s − 0.160·39-s − 1.52·43-s − 0.729·47-s + 1/7·49-s + 0.560·51-s + 0.824·53-s + 0.397·57-s + 1.69·59-s + 0.768·61-s + 0.125·63-s + 0.122·67-s − 0.240·69-s + 1.05·73-s − 0.113·77-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 23100 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(23100\)    =    \(2^{2} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(184.454\)
Root analytic conductor: \(13.5814\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 23100,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.040953731\)
\(L(\frac12)\) \(\approx\) \(3.040953731\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 + T + p T^{2} \) 1.13.b
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 3 T + p T^{2} \) 1.19.ad
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 - 5 T + p T^{2} \) 1.29.af
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 + 5 T + p T^{2} \) 1.47.f
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 13 T + p T^{2} \) 1.59.an
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - T + p T^{2} \) 1.67.ab
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.40295279479486, −14.83812276536857, −14.45602809441591, −13.77737900175040, −13.56009903047305, −12.76412162102230, −12.12958904467853, −11.85363188443309, −11.09970114326566, −10.37988967259604, −9.939448744305407, −9.533064523607032, −8.618434725676697, −8.255434353350412, −7.783843304653228, −6.990607232701452, −6.650696393535898, −5.492711113089003, −5.269986251758172, −4.469496540852121, −3.631992104917379, −3.165928559481153, −2.321750911683575, −1.613600475477110, −0.6903129954087803, 0.6903129954087803, 1.613600475477110, 2.321750911683575, 3.165928559481153, 3.631992104917379, 4.469496540852121, 5.269986251758172, 5.492711113089003, 6.650696393535898, 6.990607232701452, 7.783843304653228, 8.255434353350412, 8.618434725676697, 9.533064523607032, 9.939448744305407, 10.37988967259604, 11.09970114326566, 11.85363188443309, 12.12958904467853, 12.76412162102230, 13.56009903047305, 13.77737900175040, 14.45602809441591, 14.83812276536857, 15.40295279479486

Graph of the $Z$-function along the critical line