Properties

Label 2-221760-1.1-c1-0-123
Degree $2$
Conductor $221760$
Sign $1$
Analytic cond. $1770.76$
Root an. cond. $42.0804$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 5-s + 7-s − 11-s + 6·13-s + 2·17-s − 4·19-s + 25-s + 6·29-s + 4·31-s + 35-s − 2·37-s − 6·41-s − 4·43-s + 8·47-s + 49-s + 6·53-s − 55-s − 2·61-s + 6·65-s + 12·67-s − 6·73-s − 77-s − 12·83-s + 2·85-s − 14·89-s + 6·91-s − 4·95-s + ⋯
L(s)  = 1  + 0.447·5-s + 0.377·7-s − 0.301·11-s + 1.66·13-s + 0.485·17-s − 0.917·19-s + 1/5·25-s + 1.11·29-s + 0.718·31-s + 0.169·35-s − 0.328·37-s − 0.937·41-s − 0.609·43-s + 1.16·47-s + 1/7·49-s + 0.824·53-s − 0.134·55-s − 0.256·61-s + 0.744·65-s + 1.46·67-s − 0.702·73-s − 0.113·77-s − 1.31·83-s + 0.216·85-s − 1.48·89-s + 0.628·91-s − 0.410·95-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 221760 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(221760\)    =    \(2^{6} \cdot 3^{2} \cdot 5 \cdot 7 \cdot 11\)
Sign: $1$
Analytic conductor: \(1770.76\)
Root analytic conductor: \(42.0804\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 221760,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.803289021\)
\(L(\frac12)\) \(\approx\) \(3.803289021\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 - T \)
7 \( 1 - T \)
11 \( 1 + T \)
good13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 2 T + p T^{2} \) 1.37.c
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.04340132120657, −12.53358007760310, −12.01303455077273, −11.57150077440784, −11.02750292152201, −10.64701586220440, −10.14546358452636, −9.905832606804448, −9.062287458373291, −8.572737363146673, −8.427486968429852, −7.913011163865394, −7.154673696021863, −6.689521806048266, −6.266288106138322, −5.672297139902972, −5.391760718440237, −4.564974550917287, −4.261390404890970, −3.529499403889615, −3.066238167418289, −2.376442597392812, −1.770027602596563, −1.182652348435572, −0.5800805835855275, 0.5800805835855275, 1.182652348435572, 1.770027602596563, 2.376442597392812, 3.066238167418289, 3.529499403889615, 4.261390404890970, 4.564974550917287, 5.391760718440237, 5.672297139902972, 6.266288106138322, 6.689521806048266, 7.154673696021863, 7.913011163865394, 8.427486968429852, 8.572737363146673, 9.062287458373291, 9.905832606804448, 10.14546358452636, 10.64701586220440, 11.02750292152201, 11.57150077440784, 12.01303455077273, 12.53358007760310, 13.04340132120657

Graph of the $Z$-function along the critical line