Properties

Label 2-214200-1.1-c1-0-12
Degree $2$
Conductor $214200$
Sign $1$
Analytic cond. $1710.39$
Root an. cond. $41.3569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 7-s − 6·11-s + 4·13-s − 17-s − 8·19-s + 8·23-s − 6·31-s + 6·37-s − 2·41-s + 8·43-s + 8·47-s + 49-s + 4·53-s + 4·59-s − 12·61-s + 8·67-s + 14·71-s + 14·73-s + 6·77-s + 2·89-s − 4·91-s − 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  − 0.377·7-s − 1.80·11-s + 1.10·13-s − 0.242·17-s − 1.83·19-s + 1.66·23-s − 1.07·31-s + 0.986·37-s − 0.312·41-s + 1.21·43-s + 1.16·47-s + 1/7·49-s + 0.549·53-s + 0.520·59-s − 1.53·61-s + 0.977·67-s + 1.66·71-s + 1.63·73-s + 0.683·77-s + 0.211·89-s − 0.419·91-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214200\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $1$
Analytic conductor: \(1710.39\)
Root analytic conductor: \(41.3569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 214200,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.768552157\)
\(L(\frac12)\) \(\approx\) \(1.768552157\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 12 T + p T^{2} \) 1.61.m
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.93786987928912, −12.60532341596092, −12.40442394381823, −11.27237983554425, −11.05616815783323, −10.75093457761627, −10.38336817944943, −9.714698270281916, −9.142982364190280, −8.726107781572894, −8.367261989282525, −7.699795243382586, −7.411040311460587, −6.622730775308651, −6.379632288686426, −5.664564403327097, −5.319627768297619, −4.731185558976404, −4.100938406994377, −3.649396518279897, −2.935594855323623, −2.433544394375604, −2.020184284377528, −0.9998601858854212, −0.4211100018061133, 0.4211100018061133, 0.9998601858854212, 2.020184284377528, 2.433544394375604, 2.935594855323623, 3.649396518279897, 4.100938406994377, 4.731185558976404, 5.319627768297619, 5.664564403327097, 6.379632288686426, 6.622730775308651, 7.411040311460587, 7.699795243382586, 8.367261989282525, 8.726107781572894, 9.142982364190280, 9.714698270281916, 10.38336817944943, 10.75093457761627, 11.05616815783323, 11.27237983554425, 12.40442394381823, 12.60532341596092, 12.93786987928912

Graph of the $Z$-function along the critical line