Properties

Label 2-214200-1.1-c1-0-115
Degree $2$
Conductor $214200$
Sign $-1$
Analytic cond. $1710.39$
Root an. cond. $41.3569$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 4·11-s + 2·13-s − 17-s + 4·19-s − 6·29-s + 8·31-s + 6·37-s − 2·41-s + 8·43-s − 8·47-s + 49-s − 6·53-s − 10·61-s − 16·67-s + 8·71-s + 10·73-s + 4·77-s + 4·79-s − 12·83-s + 2·89-s + 2·91-s − 14·97-s + 101-s + 103-s + 107-s + 109-s + ⋯
L(s)  = 1  + 0.377·7-s + 1.20·11-s + 0.554·13-s − 0.242·17-s + 0.917·19-s − 1.11·29-s + 1.43·31-s + 0.986·37-s − 0.312·41-s + 1.21·43-s − 1.16·47-s + 1/7·49-s − 0.824·53-s − 1.28·61-s − 1.95·67-s + 0.949·71-s + 1.17·73-s + 0.455·77-s + 0.450·79-s − 1.31·83-s + 0.211·89-s + 0.209·91-s − 1.42·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 214200 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(214200\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1710.39\)
Root analytic conductor: \(41.3569\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 214200,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 16 T + p T^{2} \) 1.67.q
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 - 2 T + p T^{2} \) 1.89.ac
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.31121808159256, −12.70871173097956, −12.27242221123338, −11.66936491618815, −11.51199206347532, −10.93369453776080, −10.56987099703752, −9.785821906853007, −9.408589735984217, −9.166703709496255, −8.466968660405474, −8.005640478823655, −7.624316994955389, −6.944113986791636, −6.544304001911459, −5.980689441707036, −5.633855309810715, −4.830624281609388, −4.442658252919557, −3.918816773751047, −3.332806647410345, −2.811955219249707, −2.050921739002346, −1.328795080843550, −1.050545425280313, 0, 1.050545425280313, 1.328795080843550, 2.050921739002346, 2.811955219249707, 3.332806647410345, 3.918816773751047, 4.442658252919557, 4.830624281609388, 5.633855309810715, 5.980689441707036, 6.544304001911459, 6.944113986791636, 7.624316994955389, 8.005640478823655, 8.466968660405474, 9.166703709496255, 9.408589735984217, 9.785821906853007, 10.56987099703752, 10.93369453776080, 11.51199206347532, 11.66936491618815, 12.27242221123338, 12.70871173097956, 13.31121808159256

Graph of the $Z$-function along the critical line