Properties

Label 2-21168-1.1-c1-0-4
Degree $2$
Conductor $21168$
Sign $1$
Analytic cond. $169.027$
Root an. cond. $13.0010$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·5-s − 4·13-s − 6·17-s + 4·19-s + 6·23-s + 4·25-s + 3·29-s − 8·31-s + 8·37-s + 6·41-s − 8·43-s + 6·47-s − 9·53-s − 3·59-s − 10·61-s + 12·65-s + 10·67-s + 6·71-s − 7·73-s − 17·79-s − 12·83-s + 18·85-s − 6·89-s − 12·95-s − 10·97-s + 101-s + 103-s + ⋯
L(s)  = 1  − 1.34·5-s − 1.10·13-s − 1.45·17-s + 0.917·19-s + 1.25·23-s + 4/5·25-s + 0.557·29-s − 1.43·31-s + 1.31·37-s + 0.937·41-s − 1.21·43-s + 0.875·47-s − 1.23·53-s − 0.390·59-s − 1.28·61-s + 1.48·65-s + 1.22·67-s + 0.712·71-s − 0.819·73-s − 1.91·79-s − 1.31·83-s + 1.95·85-s − 0.635·89-s − 1.23·95-s − 1.01·97-s + 0.0995·101-s + 0.0985·103-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21168\)    =    \(2^{4} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(169.027\)
Root analytic conductor: \(13.0010\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.7312667568\)
\(L(\frac12)\) \(\approx\) \(0.7312667568\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 3 T + p T^{2} \) 1.29.ad
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 6 T + p T^{2} \) 1.47.ag
53 \( 1 + 9 T + p T^{2} \) 1.53.j
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 10 T + p T^{2} \) 1.67.ak
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 7 T + p T^{2} \) 1.73.h
79 \( 1 + 17 T + p T^{2} \) 1.79.r
83 \( 1 + 12 T + p T^{2} \) 1.83.m
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.58477430772963, −15.17694342751004, −14.54466230365784, −14.14177691741431, −13.25668717991979, −12.80105024602393, −12.34677060052290, −11.62635756247026, −11.25450001526624, −10.88503171538877, −10.03370833272390, −9.333464221487135, −8.964358994705181, −8.187813775568916, −7.629437640223279, −7.167899910994504, −6.710720294483216, −5.773531604619743, −4.983558425897907, −4.504659941594588, −3.939242070631936, −3.055020573585702, −2.578455332064194, −1.444270068471389, −0.3555638399950051, 0.3555638399950051, 1.444270068471389, 2.578455332064194, 3.055020573585702, 3.939242070631936, 4.504659941594588, 4.983558425897907, 5.773531604619743, 6.710720294483216, 7.167899910994504, 7.629437640223279, 8.187813775568916, 8.964358994705181, 9.333464221487135, 10.03370833272390, 10.88503171538877, 11.25450001526624, 11.62635756247026, 12.34677060052290, 12.80105024602393, 13.25668717991979, 14.14177691741431, 14.54466230365784, 15.17694342751004, 15.58477430772963

Graph of the $Z$-function along the critical line