Properties

Label 2-21168-1.1-c1-0-1
Degree $2$
Conductor $21168$
Sign $1$
Analytic cond. $169.027$
Root an. cond. $13.0010$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2·5-s + 5·11-s − 6·13-s − 4·17-s − 4·19-s − 4·23-s − 25-s − 7·29-s + 3·31-s + 8·37-s − 6·41-s − 8·43-s − 6·47-s + 6·53-s − 10·55-s − 7·59-s + 12·65-s − 10·67-s − 4·71-s − 13·73-s + 3·79-s + 7·83-s + 8·85-s + 6·89-s + 8·95-s + 5·97-s + 101-s + ⋯
L(s)  = 1  − 0.894·5-s + 1.50·11-s − 1.66·13-s − 0.970·17-s − 0.917·19-s − 0.834·23-s − 1/5·25-s − 1.29·29-s + 0.538·31-s + 1.31·37-s − 0.937·41-s − 1.21·43-s − 0.875·47-s + 0.824·53-s − 1.34·55-s − 0.911·59-s + 1.48·65-s − 1.22·67-s − 0.474·71-s − 1.52·73-s + 0.337·79-s + 0.768·83-s + 0.867·85-s + 0.635·89-s + 0.820·95-s + 0.507·97-s + 0.0995·101-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 21168 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(21168\)    =    \(2^{4} \cdot 3^{3} \cdot 7^{2}\)
Sign: $1$
Analytic conductor: \(169.027\)
Root analytic conductor: \(13.0010\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 21168,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(0.5829806509\)
\(L(\frac12)\) \(\approx\) \(0.5829806509\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 5 T + p T^{2} \) 1.11.af
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 7 T + p T^{2} \) 1.29.h
31 \( 1 - 3 T + p T^{2} \) 1.31.ad
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 4 T + p T^{2} \) 1.71.e
73 \( 1 + 13 T + p T^{2} \) 1.73.n
79 \( 1 - 3 T + p T^{2} \) 1.79.ad
83 \( 1 - 7 T + p T^{2} \) 1.83.ah
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 5 T + p T^{2} \) 1.97.af
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.28790628716713, −15.10819683854333, −14.65947010945951, −14.10964030468793, −13.29867295413833, −12.90405094190902, −12.02884902666850, −11.81692376884816, −11.45872030406007, −10.65577855870987, −9.963052241835496, −9.503922161686731, −8.848878041368904, −8.336430770090567, −7.552872730830053, −7.229611547708099, −6.421248659872812, −6.061025088670834, −4.925372259742631, −4.443338633177203, −3.960541082127978, −3.235849289681603, −2.252766118960333, −1.660522171701295, −0.2999870183126519, 0.2999870183126519, 1.660522171701295, 2.252766118960333, 3.235849289681603, 3.960541082127978, 4.443338633177203, 4.925372259742631, 6.061025088670834, 6.421248659872812, 7.229611547708099, 7.552872730830053, 8.336430770090567, 8.848878041368904, 9.503922161686731, 9.963052241835496, 10.65577855870987, 11.45872030406007, 11.81692376884816, 12.02884902666850, 12.90405094190902, 13.29867295413833, 14.10964030468793, 14.65947010945951, 15.10819683854333, 15.28790628716713

Graph of the $Z$-function along the critical line