Properties

Label 2-206310-1.1-c1-0-30
Degree $2$
Conductor $206310$
Sign $1$
Analytic cond. $1647.39$
Root an. cond. $40.5880$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s + 5-s − 6-s − 4·7-s + 8-s + 9-s + 10-s + 6·11-s − 12-s − 13-s − 4·14-s − 15-s + 16-s + 4·17-s + 18-s + 5·19-s + 20-s + 4·21-s + 6·22-s − 24-s + 25-s − 26-s − 27-s − 4·28-s + 2·29-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s − 0.408·6-s − 1.51·7-s + 0.353·8-s + 1/3·9-s + 0.316·10-s + 1.80·11-s − 0.288·12-s − 0.277·13-s − 1.06·14-s − 0.258·15-s + 1/4·16-s + 0.970·17-s + 0.235·18-s + 1.14·19-s + 0.223·20-s + 0.872·21-s + 1.27·22-s − 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s − 0.755·28-s + 0.371·29-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 206310 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 206310 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(206310\)    =    \(2 \cdot 3 \cdot 5 \cdot 13 \cdot 23^{2}\)
Sign: $1$
Analytic conductor: \(1647.39\)
Root analytic conductor: \(40.5880\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 206310,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.841045957\)
\(L(\frac12)\) \(\approx\) \(4.841045957\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 - T \)
13 \( 1 + T \)
23 \( 1 \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
17 \( 1 - 4 T + p T^{2} \) 1.17.ae
19 \( 1 - 5 T + p T^{2} \) 1.19.af
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 7 T + p T^{2} \) 1.41.h
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 - 7 T + p T^{2} \) 1.47.ah
53 \( 1 - 9 T + p T^{2} \) 1.53.aj
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 8 T + p T^{2} \) 1.67.i
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 + p T^{2} \) 1.73.a
79 \( 1 - T + p T^{2} \) 1.79.ab
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 - 3 T + p T^{2} \) 1.89.ad
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05916394177264, −12.39408722880379, −12.14053282568387, −11.87248628084041, −11.36820664042823, −10.68669935119552, −10.14864711741966, −9.758252920970767, −9.494287860139616, −8.940595815461981, −8.329192155542403, −7.461151036439240, −7.026831767190553, −6.763759823732942, −6.027639392327476, −6.014570477007664, −5.301618569243737, −4.802973073683896, −4.079825293349530, −3.510889514839096, −3.347498094269590, −2.559215766737712, −1.842151533719852, −1.052228333424256, −0.6646282368293576, 0.6646282368293576, 1.052228333424256, 1.842151533719852, 2.559215766737712, 3.347498094269590, 3.510889514839096, 4.079825293349530, 4.802973073683896, 5.301618569243737, 6.014570477007664, 6.027639392327476, 6.763759823732942, 7.026831767190553, 7.461151036439240, 8.329192155542403, 8.940595815461981, 9.494287860139616, 9.758252920970767, 10.14864711741966, 10.68669935119552, 11.36820664042823, 11.87248628084041, 12.14053282568387, 12.39408722880379, 13.05916394177264

Graph of the $Z$-function along the critical line