Properties

Label 2-200376-1.1-c1-0-38
Degree $2$
Conductor $200376$
Sign $-1$
Analytic cond. $1600.01$
Root an. cond. $40.0001$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s − 5·13-s + 6·19-s − 23-s − 5·25-s − 31-s − 9·37-s + 7·41-s + 10·43-s − 6·47-s − 6·49-s + 4·53-s + 59-s + 10·61-s + 15·67-s − 2·71-s − 2·73-s − 12·79-s + 9·83-s − 10·89-s − 5·91-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.377·7-s − 1.38·13-s + 1.37·19-s − 0.208·23-s − 25-s − 0.179·31-s − 1.47·37-s + 1.09·41-s + 1.52·43-s − 0.875·47-s − 6/7·49-s + 0.549·53-s + 0.130·59-s + 1.28·61-s + 1.83·67-s − 0.237·71-s − 0.234·73-s − 1.35·79-s + 0.987·83-s − 1.05·89-s − 0.524·91-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 200376 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(200376\)    =    \(2^{3} \cdot 3^{2} \cdot 11^{2} \cdot 23\)
Sign: $-1$
Analytic conductor: \(1600.01\)
Root analytic conductor: \(40.0001\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 200376,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
11 \( 1 \)
23 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
7 \( 1 - T + p T^{2} \) 1.7.ab
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 - 6 T + p T^{2} \) 1.19.ag
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + T + p T^{2} \) 1.31.b
37 \( 1 + 9 T + p T^{2} \) 1.37.j
41 \( 1 - 7 T + p T^{2} \) 1.41.ah
43 \( 1 - 10 T + p T^{2} \) 1.43.ak
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - T + p T^{2} \) 1.59.ab
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 15 T + p T^{2} \) 1.67.ap
71 \( 1 + 2 T + p T^{2} \) 1.71.c
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 + 12 T + p T^{2} \) 1.79.m
83 \( 1 - 9 T + p T^{2} \) 1.83.aj
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + p T^{2} \) 1.97.a
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.25287466663669, −12.78399335688494, −12.31158551268770, −11.85744852700165, −11.53689380811053, −11.00370223813953, −10.45744311613008, −9.889732672579500, −9.549051646729066, −9.249484055441367, −8.403890954667796, −8.079864707547088, −7.498108463661989, −7.159171178146412, −6.713646562736476, −5.869692573800041, −5.476469342369568, −5.079709399354747, −4.486836088709626, −3.910532693268660, −3.363234673478634, −2.658806754009322, −2.196568601509477, −1.545646047648602, −0.7833420230766243, 0, 0.7833420230766243, 1.545646047648602, 2.196568601509477, 2.658806754009322, 3.363234673478634, 3.910532693268660, 4.486836088709626, 5.079709399354747, 5.476469342369568, 5.869692573800041, 6.713646562736476, 7.159171178146412, 7.498108463661989, 8.079864707547088, 8.403890954667796, 9.249484055441367, 9.549051646729066, 9.889732672579500, 10.45744311613008, 11.00370223813953, 11.53689380811053, 11.85744852700165, 12.31158551268770, 12.78399335688494, 13.25287466663669

Graph of the $Z$-function along the critical line