Properties

Label 2-1984-1.1-c1-0-31
Degree $2$
Conductor $1984$
Sign $1$
Analytic cond. $15.8423$
Root an. cond. $3.98024$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 3·5-s − 7-s + 9-s + 6·11-s − 2·13-s + 6·15-s + 6·17-s + 19-s − 2·21-s − 6·23-s + 4·25-s − 4·27-s + 31-s + 12·33-s − 3·35-s + 10·37-s − 4·39-s − 9·41-s − 8·43-s + 3·45-s − 6·49-s + 12·51-s + 18·55-s + 2·57-s + 3·59-s + 10·61-s + ⋯
L(s)  = 1  + 1.15·3-s + 1.34·5-s − 0.377·7-s + 1/3·9-s + 1.80·11-s − 0.554·13-s + 1.54·15-s + 1.45·17-s + 0.229·19-s − 0.436·21-s − 1.25·23-s + 4/5·25-s − 0.769·27-s + 0.179·31-s + 2.08·33-s − 0.507·35-s + 1.64·37-s − 0.640·39-s − 1.40·41-s − 1.21·43-s + 0.447·45-s − 6/7·49-s + 1.68·51-s + 2.42·55-s + 0.264·57-s + 0.390·59-s + 1.28·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1984 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1984\)    =    \(2^{6} \cdot 31\)
Sign: $1$
Analytic conductor: \(15.8423\)
Root analytic conductor: \(3.98024\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1984,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.488389140\)
\(L(\frac12)\) \(\approx\) \(3.488389140\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
31 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
5 \( 1 - 3 T + p T^{2} \) 1.5.ad
7 \( 1 + T + p T^{2} \) 1.7.b
11 \( 1 - 6 T + p T^{2} \) 1.11.ag
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 9 T + p T^{2} \) 1.41.j
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 14 T + p T^{2} \) 1.73.ao
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 12 T + p T^{2} \) 1.89.am
97 \( 1 + 7 T + p T^{2} \) 1.97.h
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.375413238722977996205930723557, −8.485337521697436237399508177534, −7.77657858271545466639046100598, −6.69996703872711487433720579531, −6.11504682986501835847954287417, −5.24901066220413173156598692031, −3.94833404193019318212933236503, −3.23444550137290052172173020367, −2.22540825462662035823303530466, −1.37687389739098720088206839234, 1.37687389739098720088206839234, 2.22540825462662035823303530466, 3.23444550137290052172173020367, 3.94833404193019318212933236503, 5.24901066220413173156598692031, 6.11504682986501835847954287417, 6.69996703872711487433720579531, 7.77657858271545466639046100598, 8.485337521697436237399508177534, 9.375413238722977996205930723557

Graph of the $Z$-function along the critical line