Properties

Label 2-198198-1.1-c1-0-12
Degree $2$
Conductor $198198$
Sign $1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s + 7-s − 8-s − 13-s − 14-s + 16-s − 2·19-s − 5·25-s + 26-s + 28-s − 2·29-s + 2·31-s − 32-s − 10·37-s + 2·38-s + 4·41-s + 8·43-s − 10·47-s + 49-s + 5·50-s − 52-s + 6·53-s − 56-s + 2·58-s + 2·61-s − 2·62-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s + 0.377·7-s − 0.353·8-s − 0.277·13-s − 0.267·14-s + 1/4·16-s − 0.458·19-s − 25-s + 0.196·26-s + 0.188·28-s − 0.371·29-s + 0.359·31-s − 0.176·32-s − 1.64·37-s + 0.324·38-s + 0.624·41-s + 1.21·43-s − 1.45·47-s + 1/7·49-s + 0.707·50-s − 0.138·52-s + 0.824·53-s − 0.133·56-s + 0.262·58-s + 0.256·61-s − 0.254·62-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.047572185\)
\(L(\frac12)\) \(\approx\) \(1.047572185\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 2 T + p T^{2} \) 1.19.c
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 4 T + p T^{2} \) 1.41.ae
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 10 T + p T^{2} \) 1.47.k
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 12 T + p T^{2} \) 1.67.m
71 \( 1 - 16 T + p T^{2} \) 1.71.aq
73 \( 1 + 8 T + p T^{2} \) 1.73.i
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.05433880873872, −12.42799045228802, −12.13897186108451, −11.51568819207162, −11.24073874445711, −10.61991574958666, −10.25817335833335, −9.791527936430220, −9.243142607157601, −8.826874707810521, −8.348937665451812, −7.815232770847047, −7.457470362055028, −6.932051196250995, −6.339996201410600, −5.907363150041262, −5.280331195379391, −4.813276503637176, −4.093586316239841, −3.639464067031942, −2.936965843961931, −2.243383130154787, −1.857805692262920, −1.140250204893639, −0.3396417157734687, 0.3396417157734687, 1.140250204893639, 1.857805692262920, 2.243383130154787, 2.936965843961931, 3.639464067031942, 4.093586316239841, 4.813276503637176, 5.280331195379391, 5.907363150041262, 6.339996201410600, 6.932051196250995, 7.457470362055028, 7.815232770847047, 8.348937665451812, 8.826874707810521, 9.243142607157601, 9.791527936430220, 10.25817335833335, 10.61991574958666, 11.24073874445711, 11.51568819207162, 12.13897186108451, 12.42799045228802, 13.05433880873872

Graph of the $Z$-function along the critical line