Properties

Label 2-198198-1.1-c1-0-117
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s + 2·5-s + 7-s + 8-s + 2·10-s − 13-s + 14-s + 16-s − 4·19-s + 2·20-s + 4·23-s − 25-s − 26-s + 28-s + 4·31-s + 32-s + 2·35-s − 8·37-s − 4·38-s + 2·40-s + 6·41-s + 4·43-s + 4·46-s + 4·47-s + 49-s − 50-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s + 0.894·5-s + 0.377·7-s + 0.353·8-s + 0.632·10-s − 0.277·13-s + 0.267·14-s + 1/4·16-s − 0.917·19-s + 0.447·20-s + 0.834·23-s − 1/5·25-s − 0.196·26-s + 0.188·28-s + 0.718·31-s + 0.176·32-s + 0.338·35-s − 1.31·37-s − 0.648·38-s + 0.316·40-s + 0.937·41-s + 0.609·43-s + 0.589·46-s + 0.583·47-s + 1/7·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 - T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 - 4 T + p T^{2} \) 1.23.ae
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 + 8 T + p T^{2} \) 1.37.i
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 - 4 T + p T^{2} \) 1.47.ae
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + p T^{2} \) 1.67.a
71 \( 1 - 2 T + p T^{2} \) 1.71.ac
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 + 16 T + p T^{2} \) 1.89.q
97 \( 1 + 4 T + p T^{2} \) 1.97.e
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.39968468110604, −12.78654130460745, −12.45848200287268, −12.10262999564292, −11.38381692946253, −10.96162862280892, −10.62776108772170, −10.05763583317848, −9.611107919263662, −9.039844804985979, −8.636726091745899, −7.957488817312040, −7.550061768498281, −6.868330874189121, −6.520110057735808, −5.970482668230944, −5.470895942014856, −5.093355506289482, −4.401045598587332, −4.119096230461933, −3.282097675069367, −2.718899214312887, −2.232994492666126, −1.648613438570694, −1.054660833822801, 0, 1.054660833822801, 1.648613438570694, 2.232994492666126, 2.718899214312887, 3.282097675069367, 4.119096230461933, 4.401045598587332, 5.093355506289482, 5.470895942014856, 5.970482668230944, 6.520110057735808, 6.868330874189121, 7.550061768498281, 7.957488817312040, 8.636726091745899, 9.039844804985979, 9.611107919263662, 10.05763583317848, 10.62776108772170, 10.96162862280892, 11.38381692946253, 12.10262999564292, 12.45848200287268, 12.78654130460745, 13.39968468110604

Graph of the $Z$-function along the critical line