Properties

Label 2-198198-1.1-c1-0-104
Degree $2$
Conductor $198198$
Sign $-1$
Analytic cond. $1582.61$
Root an. cond. $39.7821$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 4-s − 7-s + 8-s − 13-s − 14-s + 16-s + 6·17-s + 4·19-s − 6·23-s − 5·25-s − 26-s − 28-s + 8·31-s + 32-s + 6·34-s + 2·37-s + 4·38-s + 4·43-s − 6·46-s − 6·47-s + 49-s − 5·50-s − 52-s − 56-s − 6·59-s − 2·61-s + ⋯
L(s)  = 1  + 0.707·2-s + 1/2·4-s − 0.377·7-s + 0.353·8-s − 0.277·13-s − 0.267·14-s + 1/4·16-s + 1.45·17-s + 0.917·19-s − 1.25·23-s − 25-s − 0.196·26-s − 0.188·28-s + 1.43·31-s + 0.176·32-s + 1.02·34-s + 0.328·37-s + 0.648·38-s + 0.609·43-s − 0.884·46-s − 0.875·47-s + 1/7·49-s − 0.707·50-s − 0.138·52-s − 0.133·56-s − 0.781·59-s − 0.256·61-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 198198 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(198198\)    =    \(2 \cdot 3^{2} \cdot 7 \cdot 11^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(1582.61\)
Root analytic conductor: \(39.7821\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 198198,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 \)
7 \( 1 + T \)
11 \( 1 \)
13 \( 1 + T \)
good5 \( 1 + p T^{2} \) 1.5.a
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + p T^{2} \) 1.41.a
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 6 T + p T^{2} \) 1.47.g
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 2 T + p T^{2} \) 1.61.c
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 10 T + p T^{2} \) 1.73.ak
79 \( 1 + 8 T + p T^{2} \) 1.79.i
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + 12 T + p T^{2} \) 1.89.m
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.46741348959738, −12.73455474111403, −12.30758670600357, −12.05739608824243, −11.56452748721013, −11.16045896974297, −10.32214287854834, −10.09258854216716, −9.642150694105774, −9.255719308402148, −8.347896414599755, −7.887583846000439, −7.683508657096078, −6.997801598984107, −6.457925942607943, −5.853352818594230, −5.683922455090071, −4.989711906096767, −4.441359263496952, −3.893225526316219, −3.355809827214018, −2.894233458805150, −2.298050792568251, −1.540033397688228, −0.9440728411154336, 0, 0.9440728411154336, 1.540033397688228, 2.298050792568251, 2.894233458805150, 3.355809827214018, 3.893225526316219, 4.441359263496952, 4.989711906096767, 5.683922455090071, 5.853352818594230, 6.457925942607943, 6.997801598984107, 7.683508657096078, 7.887583846000439, 8.347896414599755, 9.255719308402148, 9.642150694105774, 10.09258854216716, 10.32214287854834, 11.16045896974297, 11.56452748721013, 12.05739608824243, 12.30758670600357, 12.73455474111403, 13.46741348959738

Graph of the $Z$-function along the critical line