Properties

Label 2-19800-1.1-c1-0-46
Degree $2$
Conductor $19800$
Sign $1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $2$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3·7-s + 11-s − 5·13-s − 6·17-s − 19-s − 6·23-s − 6·29-s − 5·31-s − 6·37-s − 10·41-s − 7·43-s − 4·47-s + 2·49-s − 2·53-s − 12·59-s + 9·61-s − 13·67-s − 2·73-s − 3·77-s + 12·79-s + 2·83-s + 6·89-s + 15·91-s + 97-s + 101-s + 103-s + 107-s + ⋯
L(s)  = 1  − 1.13·7-s + 0.301·11-s − 1.38·13-s − 1.45·17-s − 0.229·19-s − 1.25·23-s − 1.11·29-s − 0.898·31-s − 0.986·37-s − 1.56·41-s − 1.06·43-s − 0.583·47-s + 2/7·49-s − 0.274·53-s − 1.56·59-s + 1.15·61-s − 1.58·67-s − 0.234·73-s − 0.341·77-s + 1.35·79-s + 0.219·83-s + 0.635·89-s + 1.57·91-s + 0.101·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(2\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 + 3 T + p T^{2} \) 1.7.d
13 \( 1 + 5 T + p T^{2} \) 1.13.f
17 \( 1 + 6 T + p T^{2} \) 1.17.g
19 \( 1 + T + p T^{2} \) 1.19.b
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 6 T + p T^{2} \) 1.29.g
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 10 T + p T^{2} \) 1.41.k
43 \( 1 + 7 T + p T^{2} \) 1.43.h
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 9 T + p T^{2} \) 1.61.aj
67 \( 1 + 13 T + p T^{2} \) 1.67.n
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 - 2 T + p T^{2} \) 1.83.ac
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - T + p T^{2} \) 1.97.ab
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.31976677310282, −15.56973165127116, −15.22052496565869, −14.65891808973051, −13.99461005318605, −13.43150960598156, −12.93198937681869, −12.45820503842882, −11.85015329296679, −11.37512470999073, −10.56415279948520, −10.01920354764964, −9.631177279338753, −8.952686422146794, −8.532433828036356, −7.503982117488293, −7.203185808377352, −6.377658137851227, −6.141497180488928, −5.067996947307905, −4.668080870499089, −3.671573826292042, −3.316003802297628, −2.214787304566340, −1.833583885083313, 0, 0, 1.833583885083313, 2.214787304566340, 3.316003802297628, 3.671573826292042, 4.668080870499089, 5.067996947307905, 6.141497180488928, 6.377658137851227, 7.203185808377352, 7.503982117488293, 8.532433828036356, 8.952686422146794, 9.631177279338753, 10.01920354764964, 10.56415279948520, 11.37512470999073, 11.85015329296679, 12.45820503842882, 12.93198937681869, 13.43150960598156, 13.99461005318605, 14.65891808973051, 15.22052496565869, 15.56973165127116, 16.31976677310282

Graph of the $Z$-function along the critical line