Properties

Label 2-19800-1.1-c1-0-35
Degree $2$
Conductor $19800$
Sign $-1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·7-s + 11-s − 8·19-s − 8·23-s − 10·29-s + 8·31-s + 10·37-s + 2·41-s + 6·43-s − 8·47-s − 3·49-s + 14·53-s + 4·59-s + 10·61-s − 4·67-s + 8·73-s + 2·77-s − 4·79-s + 10·83-s − 6·89-s + 10·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + ⋯
L(s)  = 1  + 0.755·7-s + 0.301·11-s − 1.83·19-s − 1.66·23-s − 1.85·29-s + 1.43·31-s + 1.64·37-s + 0.312·41-s + 0.914·43-s − 1.16·47-s − 3/7·49-s + 1.92·53-s + 0.520·59-s + 1.28·61-s − 0.488·67-s + 0.936·73-s + 0.227·77-s − 0.450·79-s + 1.09·83-s − 0.635·89-s + 1.01·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 - T \)
good7 \( 1 - 2 T + p T^{2} \) 1.7.ac
13 \( 1 + p T^{2} \) 1.13.a
17 \( 1 + p T^{2} \) 1.17.a
19 \( 1 + 8 T + p T^{2} \) 1.19.i
23 \( 1 + 8 T + p T^{2} \) 1.23.i
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 6 T + p T^{2} \) 1.43.ag
47 \( 1 + 8 T + p T^{2} \) 1.47.i
53 \( 1 - 14 T + p T^{2} \) 1.53.ao
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 - 10 T + p T^{2} \) 1.61.ak
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 - 8 T + p T^{2} \) 1.73.ai
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 10 T + p T^{2} \) 1.83.ak
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 - 10 T + p T^{2} \) 1.97.ak
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.01779293295251, −15.18778815757003, −14.87845040722049, −14.42229919687073, −13.84351109208128, −13.08101693495940, −12.83239165731789, −11.97735603237845, −11.53935588770816, −11.07114759662003, −10.39534376619484, −9.880150717904109, −9.231279729677794, −8.537494990915650, −8.045476337264412, −7.629886438998717, −6.703171222760361, −6.193206427869566, −5.628580184621927, −4.797256323116616, −4.093135703792394, −3.826819864387522, −2.459708852759450, −2.124390536110365, −1.140899384722113, 0, 1.140899384722113, 2.124390536110365, 2.459708852759450, 3.826819864387522, 4.093135703792394, 4.797256323116616, 5.628580184621927, 6.193206427869566, 6.703171222760361, 7.629886438998717, 8.045476337264412, 8.537494990915650, 9.231279729677794, 9.880150717904109, 10.39534376619484, 11.07114759662003, 11.53935588770816, 11.97735603237845, 12.83239165731789, 13.08101693495940, 13.84351109208128, 14.42229919687073, 14.87845040722049, 15.18778815757003, 16.01779293295251

Graph of the $Z$-function along the critical line