Properties

Label 2-19800-1.1-c1-0-25
Degree $2$
Conductor $19800$
Sign $-1$
Analytic cond. $158.103$
Root an. cond. $12.5739$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4·7-s − 11-s − 2·13-s − 2·17-s + 4·19-s + 2·29-s + 2·37-s + 6·41-s + 8·47-s + 9·49-s − 2·53-s − 4·59-s − 10·61-s − 4·67-s − 14·73-s + 4·77-s + 16·79-s − 10·89-s + 8·91-s + 6·97-s + 101-s + 103-s + 107-s + 109-s + 113-s + 8·119-s + ⋯
L(s)  = 1  − 1.51·7-s − 0.301·11-s − 0.554·13-s − 0.485·17-s + 0.917·19-s + 0.371·29-s + 0.328·37-s + 0.937·41-s + 1.16·47-s + 9/7·49-s − 0.274·53-s − 0.520·59-s − 1.28·61-s − 0.488·67-s − 1.63·73-s + 0.455·77-s + 1.80·79-s − 1.05·89-s + 0.838·91-s + 0.609·97-s + 0.0995·101-s + 0.0985·103-s + 0.0966·107-s + 0.0957·109-s + 0.0940·113-s + 0.733·119-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19800 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19800\)    =    \(2^{3} \cdot 3^{2} \cdot 5^{2} \cdot 11\)
Sign: $-1$
Analytic conductor: \(158.103\)
Root analytic conductor: \(12.5739\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19800,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
5 \( 1 \)
11 \( 1 + T \)
good7 \( 1 + 4 T + p T^{2} \) 1.7.e
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 + 2 T + p T^{2} \) 1.53.c
59 \( 1 + 4 T + p T^{2} \) 1.59.e
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 14 T + p T^{2} \) 1.73.o
79 \( 1 - 16 T + p T^{2} \) 1.79.aq
83 \( 1 + p T^{2} \) 1.83.a
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 - 6 T + p T^{2} \) 1.97.ag
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.94146699168799, −15.50824959814220, −14.99897719257288, −14.16844224405989, −13.77310320532213, −13.14230090753811, −12.72845215671929, −12.16662423069177, −11.68549598495120, −10.83441655673006, −10.38606208556640, −9.747992698366804, −9.308384995535103, −8.857684996502494, −7.922493516233171, −7.366213903966423, −6.870037655948136, −6.099957424395163, −5.753502959770234, −4.822853411060116, −4.231045216970585, −3.314124598677663, −2.900864469770616, −2.134058965000547, −0.9133980761383935, 0, 0.9133980761383935, 2.134058965000547, 2.900864469770616, 3.314124598677663, 4.231045216970585, 4.822853411060116, 5.753502959770234, 6.099957424395163, 6.870037655948136, 7.366213903966423, 7.922493516233171, 8.857684996502494, 9.308384995535103, 9.747992698366804, 10.38606208556640, 10.83441655673006, 11.68549598495120, 12.16662423069177, 12.72845215671929, 13.14230090753811, 13.77310320532213, 14.16844224405989, 14.99897719257288, 15.50824959814220, 15.94146699168799

Graph of the $Z$-function along the critical line