Properties

Label 2-193550-1.1-c1-0-18
Degree $2$
Conductor $193550$
Sign $1$
Analytic cond. $1545.50$
Root an. cond. $39.3129$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 2·3-s + 4-s + 2·6-s + 8-s + 9-s + 3·11-s + 2·12-s − 4·13-s + 16-s − 4·17-s + 18-s + 4·19-s + 3·22-s − 4·23-s + 2·24-s − 4·26-s − 4·27-s − 9·29-s − 2·31-s + 32-s + 6·33-s − 4·34-s + 36-s − 3·37-s + 4·38-s − 8·39-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.15·3-s + 1/2·4-s + 0.816·6-s + 0.353·8-s + 1/3·9-s + 0.904·11-s + 0.577·12-s − 1.10·13-s + 1/4·16-s − 0.970·17-s + 0.235·18-s + 0.917·19-s + 0.639·22-s − 0.834·23-s + 0.408·24-s − 0.784·26-s − 0.769·27-s − 1.67·29-s − 0.359·31-s + 0.176·32-s + 1.04·33-s − 0.685·34-s + 1/6·36-s − 0.493·37-s + 0.648·38-s − 1.28·39-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 193550 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(193550\)    =    \(2 \cdot 5^{2} \cdot 7^{2} \cdot 79\)
Sign: $1$
Analytic conductor: \(1545.50\)
Root analytic conductor: \(39.3129\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 193550,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(5.232765446\)
\(L(\frac12)\) \(\approx\) \(5.232765446\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
5 \( 1 \)
7 \( 1 \)
79 \( 1 + T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 4 T + p T^{2} \) 1.17.e
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 + 9 T + p T^{2} \) 1.29.j
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 3 T + p T^{2} \) 1.37.d
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 - T + p T^{2} \) 1.47.ab
53 \( 1 - 11 T + p T^{2} \) 1.53.al
59 \( 1 + 10 T + p T^{2} \) 1.59.k
61 \( 1 - 3 T + p T^{2} \) 1.61.ad
67 \( 1 - 7 T + p T^{2} \) 1.67.ah
71 \( 1 + 15 T + p T^{2} \) 1.71.p
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
83 \( 1 - 5 T + p T^{2} \) 1.83.af
89 \( 1 - T + p T^{2} \) 1.89.ab
97 \( 1 + 5 T + p T^{2} \) 1.97.f
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.17602916642819, −12.74946275618063, −12.19325800651634, −11.78481750682173, −11.36145954902172, −10.80713705528219, −10.28285533712447, −9.512544194934157, −9.279755101520443, −9.046823891465648, −8.213744662764387, −7.802980529452229, −7.258864805721830, −7.040101356381109, −6.277777826141482, −5.658699482383378, −5.373644111422756, −4.506396811199757, −4.059495182298256, −3.740647563362672, −3.047921830034010, −2.506155766319403, −2.074180417335937, −1.525404888883299, −0.4874084887290898, 0.4874084887290898, 1.525404888883299, 2.074180417335937, 2.506155766319403, 3.047921830034010, 3.740647563362672, 4.059495182298256, 4.506396811199757, 5.373644111422756, 5.658699482383378, 6.277777826141482, 7.040101356381109, 7.258864805721830, 7.802980529452229, 8.213744662764387, 9.046823891465648, 9.279755101520443, 9.512544194934157, 10.28285533712447, 10.80713705528219, 11.36145954902172, 11.78481750682173, 12.19325800651634, 12.74946275618063, 13.17602916642819

Graph of the $Z$-function along the critical line