Properties

Label 2-19110-1.1-c1-0-47
Degree $2$
Conductor $19110$
Sign $-1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s − 13-s − 15-s + 16-s + 3·17-s − 18-s + 19-s + 20-s + 24-s + 25-s + 26-s − 27-s + 6·29-s + 30-s − 2·31-s − 32-s − 3·34-s + 36-s − 10·37-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s + 0.727·17-s − 0.235·18-s + 0.229·19-s + 0.223·20-s + 0.204·24-s + 1/5·25-s + 0.196·26-s − 0.192·27-s + 1.11·29-s + 0.182·30-s − 0.359·31-s − 0.176·32-s − 0.514·34-s + 1/6·36-s − 1.64·37-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $-1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 - 3 T + p T^{2} \) 1.17.ad
19 \( 1 - T + p T^{2} \) 1.19.ab
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 + 2 T + p T^{2} \) 1.31.c
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 + 3 T + p T^{2} \) 1.41.d
43 \( 1 + T + p T^{2} \) 1.43.b
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 + 3 T + p T^{2} \) 1.71.d
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + T + p T^{2} \) 1.79.b
83 \( 1 + 15 T + p T^{2} \) 1.83.p
89 \( 1 - 9 T + p T^{2} \) 1.89.aj
97 \( 1 - 7 T + p T^{2} \) 1.97.ah
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.14115084861133, −15.48464161543470, −15.17784871163792, −14.21046029972372, −13.96805590749418, −13.21821994631914, −12.47238342252438, −12.04016281622712, −11.69187856730811, −10.72576455461779, −10.42528595551166, −10.03389630925974, −9.172192605458474, −8.894071240684458, −8.032844759019227, −7.440111903325041, −6.907070237819548, −6.253793739692680, −5.628373714348232, −5.106178734058118, −4.305603305060868, −3.372164179171839, −2.668544552420986, −1.738202952058800, −1.061183527602555, 0, 1.061183527602555, 1.738202952058800, 2.668544552420986, 3.372164179171839, 4.305603305060868, 5.106178734058118, 5.628373714348232, 6.253793739692680, 6.907070237819548, 7.440111903325041, 8.032844759019227, 8.894071240684458, 9.172192605458474, 10.03389630925974, 10.42528595551166, 10.72576455461779, 11.69187856730811, 12.04016281622712, 12.47238342252438, 13.21821994631914, 13.96805590749418, 14.21046029972372, 15.17784871163792, 15.48464161543470, 16.14115084861133

Graph of the $Z$-function along the critical line