Properties

Label 2-19110-1.1-c1-0-29
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s + 3-s + 4-s − 5-s + 6-s + 8-s + 9-s − 10-s + 4·11-s + 12-s − 13-s − 15-s + 16-s − 2·17-s + 18-s + 4·19-s − 20-s + 4·22-s + 24-s + 25-s − 26-s + 27-s − 2·29-s − 30-s − 8·31-s + 32-s + 4·33-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.577·3-s + 1/2·4-s − 0.447·5-s + 0.408·6-s + 0.353·8-s + 1/3·9-s − 0.316·10-s + 1.20·11-s + 0.288·12-s − 0.277·13-s − 0.258·15-s + 1/4·16-s − 0.485·17-s + 0.235·18-s + 0.917·19-s − 0.223·20-s + 0.852·22-s + 0.204·24-s + 1/5·25-s − 0.196·26-s + 0.192·27-s − 0.371·29-s − 0.182·30-s − 1.43·31-s + 0.176·32-s + 0.696·33-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.749931581\)
\(L(\frac12)\) \(\approx\) \(4.749931581\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 - T \)
5 \( 1 + T \)
7 \( 1 \)
13 \( 1 + T \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 - 6 T + p T^{2} \) 1.37.ag
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 10 T + p T^{2} \) 1.73.k
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.64752326893849, −14.97718127181737, −14.54653087029467, −14.27709905187781, −13.55937964602609, −13.00601476067365, −12.52728999766030, −11.90355216761641, −11.34726525272716, −11.02044004947277, −10.07744438663006, −9.508498124054904, −8.989385940976213, −8.395447331582582, −7.513245000656431, −7.246046582415252, −6.588020008502473, −5.799745731886453, −5.229342234536668, −4.202460504859199, −4.057543322686475, −3.263037207888381, −2.540180579976920, −1.730912388671990, −0.8053103263001221, 0.8053103263001221, 1.730912388671990, 2.540180579976920, 3.263037207888381, 4.057543322686475, 4.202460504859199, 5.229342234536668, 5.799745731886453, 6.588020008502473, 7.246046582415252, 7.513245000656431, 8.395447331582582, 8.989385940976213, 9.508498124054904, 10.07744438663006, 11.02044004947277, 11.34726525272716, 11.90355216761641, 12.52728999766030, 13.00601476067365, 13.55937964602609, 14.27709905187781, 14.54653087029467, 14.97718127181737, 15.64752326893849

Graph of the $Z$-function along the critical line