Properties

Label 2-19110-1.1-c1-0-10
Degree $2$
Conductor $19110$
Sign $1$
Analytic cond. $152.594$
Root an. cond. $12.3528$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 5-s + 6-s − 8-s + 9-s − 10-s − 12-s + 13-s − 15-s + 16-s − 2·17-s − 18-s + 8·19-s + 20-s − 4·23-s + 24-s + 25-s − 26-s − 27-s + 6·29-s + 30-s + 8·31-s − 32-s + 2·34-s + 36-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.447·5-s + 0.408·6-s − 0.353·8-s + 1/3·9-s − 0.316·10-s − 0.288·12-s + 0.277·13-s − 0.258·15-s + 1/4·16-s − 0.485·17-s − 0.235·18-s + 1.83·19-s + 0.223·20-s − 0.834·23-s + 0.204·24-s + 1/5·25-s − 0.196·26-s − 0.192·27-s + 1.11·29-s + 0.182·30-s + 1.43·31-s − 0.176·32-s + 0.342·34-s + 1/6·36-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 19110 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(19110\)    =    \(2 \cdot 3 \cdot 5 \cdot 7^{2} \cdot 13\)
Sign: $1$
Analytic conductor: \(152.594\)
Root analytic conductor: \(12.3528\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 19110,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.447735383\)
\(L(\frac12)\) \(\approx\) \(1.447735383\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 + T \)
5 \( 1 - T \)
7 \( 1 \)
13 \( 1 - T \)
good11 \( 1 + p T^{2} \) 1.11.a
17 \( 1 + 2 T + p T^{2} \) 1.17.c
19 \( 1 - 8 T + p T^{2} \) 1.19.ai
23 \( 1 + 4 T + p T^{2} \) 1.23.e
29 \( 1 - 6 T + p T^{2} \) 1.29.ag
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 + 2 T + p T^{2} \) 1.41.c
43 \( 1 + 12 T + p T^{2} \) 1.43.m
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 10 T + p T^{2} \) 1.53.ak
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 - 8 T + p T^{2} \) 1.71.ai
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.82694075493790, −15.46633885443823, −14.72372093978892, −13.81714526904698, −13.73838309033632, −12.98427185462881, −12.10148577268848, −11.80278013681367, −11.41242035067543, −10.51550536270879, −10.02375997128437, −9.870598637353296, −8.910018501766238, −8.483741699755445, −7.801632059895824, −7.085977822338760, −6.573778786498080, −6.032888261006813, −5.264985201045292, −4.813923424541594, −3.784097093108322, −3.053175781938190, −2.204526624120862, −1.358313610286355, −0.6276867804753838, 0.6276867804753838, 1.358313610286355, 2.204526624120862, 3.053175781938190, 3.784097093108322, 4.813923424541594, 5.264985201045292, 6.032888261006813, 6.573778786498080, 7.085977822338760, 7.801632059895824, 8.483741699755445, 8.910018501766238, 9.870598637353296, 10.02375997128437, 10.51550536270879, 11.41242035067543, 11.80278013681367, 12.10148577268848, 12.98427185462881, 13.73838309033632, 13.81714526904698, 14.72372093978892, 15.46633885443823, 15.82694075493790

Graph of the $Z$-function along the critical line