Properties

Label 2-190400-1.1-c1-0-29
Degree $2$
Conductor $190400$
Sign $-1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 7-s − 2·9-s − 6·11-s − 7·13-s − 17-s − 5·19-s − 21-s − 6·23-s − 5·27-s − 3·29-s + 5·31-s − 6·33-s + 2·37-s − 7·39-s − 6·41-s + 8·43-s − 3·47-s + 49-s − 51-s − 3·53-s − 5·57-s + 3·59-s + 61-s + 2·63-s + 8·67-s − 6·69-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.377·7-s − 2/3·9-s − 1.80·11-s − 1.94·13-s − 0.242·17-s − 1.14·19-s − 0.218·21-s − 1.25·23-s − 0.962·27-s − 0.557·29-s + 0.898·31-s − 1.04·33-s + 0.328·37-s − 1.12·39-s − 0.937·41-s + 1.21·43-s − 0.437·47-s + 1/7·49-s − 0.140·51-s − 0.412·53-s − 0.662·57-s + 0.390·59-s + 0.128·61-s + 0.251·63-s + 0.977·67-s − 0.722·69-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good3 \( 1 - T + p T^{2} \) 1.3.ab
11 \( 1 + 6 T + p T^{2} \) 1.11.g
13 \( 1 + 7 T + p T^{2} \) 1.13.h
19 \( 1 + 5 T + p T^{2} \) 1.19.f
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 - 5 T + p T^{2} \) 1.31.af
37 \( 1 - 2 T + p T^{2} \) 1.37.ac
41 \( 1 + 6 T + p T^{2} \) 1.41.g
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 3 T + p T^{2} \) 1.47.d
53 \( 1 + 3 T + p T^{2} \) 1.53.d
59 \( 1 - 3 T + p T^{2} \) 1.59.ad
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 15 T + p T^{2} \) 1.71.ap
73 \( 1 - 13 T + p T^{2} \) 1.73.an
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 + 15 T + p T^{2} \) 1.89.p
97 \( 1 + 17 T + p T^{2} \) 1.97.r
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.44881256711943, −12.74602594487868, −12.48731730471325, −12.18542863711686, −11.31839200719387, −11.04896770095935, −10.42714029679723, −9.824912719985439, −9.785397671690896, −9.144578083200797, −8.325707740209168, −8.112608511001380, −7.852352896179319, −7.083638139961310, −6.729822891319664, −5.991247934652580, −5.429456561217842, −5.143324129736763, −4.418515133562052, −3.967414469025801, −3.153758805030521, −2.548316534639977, −2.428585703453516, −1.869001865235124, −0.4600008556376118, 0, 0.4600008556376118, 1.869001865235124, 2.428585703453516, 2.548316534639977, 3.153758805030521, 3.967414469025801, 4.418515133562052, 5.143324129736763, 5.429456561217842, 5.991247934652580, 6.729822891319664, 7.083638139961310, 7.852352896179319, 8.112608511001380, 8.325707740209168, 9.144578083200797, 9.785397671690896, 9.824912719985439, 10.42714029679723, 11.04896770095935, 11.31839200719387, 12.18542863711686, 12.48731730471325, 12.74602594487868, 13.44881256711943

Graph of the $Z$-function along the critical line