Properties

Label 2-190400-1.1-c1-0-115
Degree $2$
Conductor $190400$
Sign $-1$
Analytic cond. $1520.35$
Root an. cond. $38.9916$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·3-s + 7-s + 9-s + 11-s − 2·13-s + 17-s + 5·19-s + 2·21-s + 6·23-s − 4·27-s − 5·29-s + 7·31-s + 2·33-s − 6·37-s − 4·39-s + 9·41-s − 2·43-s + 49-s + 2·51-s + 10·57-s − 7·59-s − 4·61-s + 63-s − 4·67-s + 12·69-s − 8·71-s + 11·73-s + ⋯
L(s)  = 1  + 1.15·3-s + 0.377·7-s + 1/3·9-s + 0.301·11-s − 0.554·13-s + 0.242·17-s + 1.14·19-s + 0.436·21-s + 1.25·23-s − 0.769·27-s − 0.928·29-s + 1.25·31-s + 0.348·33-s − 0.986·37-s − 0.640·39-s + 1.40·41-s − 0.304·43-s + 1/7·49-s + 0.280·51-s + 1.32·57-s − 0.911·59-s − 0.512·61-s + 0.125·63-s − 0.488·67-s + 1.44·69-s − 0.949·71-s + 1.28·73-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 190400 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(190400\)    =    \(2^{6} \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(1520.35\)
Root analytic conductor: \(38.9916\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 190400,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
5 \( 1 \)
7 \( 1 - T \)
17 \( 1 - T \)
good3 \( 1 - 2 T + p T^{2} \) 1.3.ac
11 \( 1 - T + p T^{2} \) 1.11.ab
13 \( 1 + 2 T + p T^{2} \) 1.13.c
19 \( 1 - 5 T + p T^{2} \) 1.19.af
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 + 5 T + p T^{2} \) 1.29.f
31 \( 1 - 7 T + p T^{2} \) 1.31.ah
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 9 T + p T^{2} \) 1.41.aj
43 \( 1 + 2 T + p T^{2} \) 1.43.c
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + p T^{2} \) 1.53.a
59 \( 1 + 7 T + p T^{2} \) 1.59.h
61 \( 1 + 4 T + p T^{2} \) 1.61.e
67 \( 1 + 4 T + p T^{2} \) 1.67.e
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 11 T + p T^{2} \) 1.73.al
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 17 T + p T^{2} \) 1.83.ar
89 \( 1 + 10 T + p T^{2} \) 1.89.k
97 \( 1 + 13 T + p T^{2} \) 1.97.n
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.50602136268886, −12.97159920630489, −12.41622572761709, −11.92289458334726, −11.58963810899712, −10.84321038254774, −10.65929213557348, −9.772959251605313, −9.406276079260386, −9.230927813835523, −8.538326020128537, −8.150160773540919, −7.564953695414799, −7.352606996261341, −6.727688533312424, −6.056048512558218, −5.466256611868456, −4.950255463817775, −4.493197912774457, −3.651593206373218, −3.416182980152378, −2.647443652422740, −2.421153979399761, −1.480007327572590, −1.076326709808020, 0, 1.076326709808020, 1.480007327572590, 2.421153979399761, 2.647443652422740, 3.416182980152378, 3.651593206373218, 4.493197912774457, 4.950255463817775, 5.466256611868456, 6.056048512558218, 6.727688533312424, 7.352606996261341, 7.564953695414799, 8.150160773540919, 8.538326020128537, 9.230927813835523, 9.406276079260386, 9.772959251605313, 10.65929213557348, 10.84321038254774, 11.58963810899712, 11.92289458334726, 12.41622572761709, 12.97159920630489, 13.50602136268886

Graph of the $Z$-function along the critical line