Properties

Label 2-18240-1.1-c1-0-33
Degree $2$
Conductor $18240$
Sign $1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 5-s + 4·7-s + 9-s + 6·13-s − 15-s + 2·17-s − 19-s + 4·21-s + 8·23-s + 25-s + 27-s − 2·29-s − 8·31-s − 4·35-s − 10·37-s + 6·39-s + 6·41-s + 8·43-s − 45-s + 9·49-s + 2·51-s + 2·53-s − 57-s + 12·59-s + 2·61-s + 4·63-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.447·5-s + 1.51·7-s + 1/3·9-s + 1.66·13-s − 0.258·15-s + 0.485·17-s − 0.229·19-s + 0.872·21-s + 1.66·23-s + 1/5·25-s + 0.192·27-s − 0.371·29-s − 1.43·31-s − 0.676·35-s − 1.64·37-s + 0.960·39-s + 0.937·41-s + 1.21·43-s − 0.149·45-s + 9/7·49-s + 0.280·51-s + 0.274·53-s − 0.132·57-s + 1.56·59-s + 0.256·61-s + 0.503·63-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(4.005867679\)
\(L(\frac12)\) \(\approx\) \(4.005867679\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
5 \( 1 + T \)
19 \( 1 + T \)
good7 \( 1 - 4 T + p T^{2} \) 1.7.ae
11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 - 6 T + p T^{2} \) 1.13.ag
17 \( 1 - 2 T + p T^{2} \) 1.17.ac
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 8 T + p T^{2} \) 1.31.i
37 \( 1 + 10 T + p T^{2} \) 1.37.k
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 - 2 T + p T^{2} \) 1.53.ac
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 - 2 T + p T^{2} \) 1.61.ac
67 \( 1 - 12 T + p T^{2} \) 1.67.am
71 \( 1 + 8 T + p T^{2} \) 1.71.i
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 + 16 T + p T^{2} \) 1.79.q
83 \( 1 - 4 T + p T^{2} \) 1.83.ae
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 10 T + p T^{2} \) 1.97.k
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.80124086816435, −15.11173138134170, −14.65761441680613, −14.26464553694087, −13.72641906045483, −12.91680479992787, −12.73540470894392, −11.68651428780026, −11.35397124708215, −10.77810647323104, −10.48024300793645, −9.350766028109867, −8.810060865388057, −8.516608581292268, −7.870615390547837, −7.302598553864416, −6.789826743804290, −5.693064344627712, −5.314263358523021, −4.479911367118179, −3.830438625396385, −3.341662631157321, −2.322497773234736, −1.516768647459630, −0.9072503016427667, 0.9072503016427667, 1.516768647459630, 2.322497773234736, 3.341662631157321, 3.830438625396385, 4.479911367118179, 5.314263358523021, 5.693064344627712, 6.789826743804290, 7.302598553864416, 7.870615390547837, 8.516608581292268, 8.810060865388057, 9.350766028109867, 10.48024300793645, 10.77810647323104, 11.35397124708215, 11.68651428780026, 12.73540470894392, 12.91680479992787, 13.72641906045483, 14.26464553694087, 14.65761441680613, 15.11173138134170, 15.80124086816435

Graph of the $Z$-function along the critical line