Properties

Label 2-18240-1.1-c1-0-23
Degree $2$
Conductor $18240$
Sign $1$
Analytic cond. $145.647$
Root an. cond. $12.0684$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s + 5-s − 2·7-s + 9-s + 4·11-s + 2·13-s − 15-s − 19-s + 2·21-s + 8·23-s + 25-s − 27-s + 2·29-s + 10·31-s − 4·33-s − 2·35-s − 6·37-s − 2·39-s + 12·41-s − 8·43-s + 45-s + 8·47-s − 3·49-s + 6·53-s + 4·55-s + 57-s + 6·59-s + ⋯
L(s)  = 1  − 0.577·3-s + 0.447·5-s − 0.755·7-s + 1/3·9-s + 1.20·11-s + 0.554·13-s − 0.258·15-s − 0.229·19-s + 0.436·21-s + 1.66·23-s + 1/5·25-s − 0.192·27-s + 0.371·29-s + 1.79·31-s − 0.696·33-s − 0.338·35-s − 0.986·37-s − 0.320·39-s + 1.87·41-s − 1.21·43-s + 0.149·45-s + 1.16·47-s − 3/7·49-s + 0.824·53-s + 0.539·55-s + 0.132·57-s + 0.781·59-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 18240 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(18240\)    =    \(2^{6} \cdot 3 \cdot 5 \cdot 19\)
Sign: $1$
Analytic conductor: \(145.647\)
Root analytic conductor: \(12.0684\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 18240,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.316932796\)
\(L(\frac12)\) \(\approx\) \(2.316932796\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
5 \( 1 - T \)
19 \( 1 + T \)
good7 \( 1 + 2 T + p T^{2} \) 1.7.c
11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 + p T^{2} \) 1.17.a
23 \( 1 - 8 T + p T^{2} \) 1.23.ai
29 \( 1 - 2 T + p T^{2} \) 1.29.ac
31 \( 1 - 10 T + p T^{2} \) 1.31.ak
37 \( 1 + 6 T + p T^{2} \) 1.37.g
41 \( 1 - 12 T + p T^{2} \) 1.41.am
43 \( 1 + 8 T + p T^{2} \) 1.43.i
47 \( 1 - 8 T + p T^{2} \) 1.47.ai
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 + 10 T + p T^{2} \) 1.61.k
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 10 T + p T^{2} \) 1.79.ak
83 \( 1 - 6 T + p T^{2} \) 1.83.ag
89 \( 1 + p T^{2} \) 1.89.a
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.75780241604222, −15.36425044428285, −14.71352506729399, −14.04518049091227, −13.56236883670386, −13.02771905513855, −12.46130633725856, −11.92284020410790, −11.38561224389359, −10.73268218379213, −10.24734960825843, −9.613687158403345, −9.018560681642267, −8.671547747032002, −7.705372966118332, −6.892775382919807, −6.495851036386994, −6.121019052184148, −5.301920407509011, −4.640025500565476, −3.914474335335814, −3.212169171676226, −2.431572762088480, −1.317455848207890, −0.7507503571556124, 0.7507503571556124, 1.317455848207890, 2.431572762088480, 3.212169171676226, 3.914474335335814, 4.640025500565476, 5.301920407509011, 6.121019052184148, 6.495851036386994, 6.892775382919807, 7.705372966118332, 8.671547747032002, 9.018560681642267, 9.613687158403345, 10.24734960825843, 10.73268218379213, 11.38561224389359, 11.92284020410790, 12.46130633725856, 13.02771905513855, 13.56236883670386, 14.04518049091227, 14.71352506729399, 15.36425044428285, 15.75780241604222

Graph of the $Z$-function along the critical line