Properties

Label 2-182070-1.1-c1-0-41
Degree $2$
Conductor $182070$
Sign $1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s + 7-s − 8-s + 10-s + 4·11-s + 4·13-s − 14-s + 16-s − 20-s − 4·22-s − 2·23-s + 25-s − 4·26-s + 28-s − 2·29-s − 6·31-s − 32-s − 35-s + 10·37-s + 40-s + 10·41-s + 4·44-s + 2·46-s + 49-s − 50-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s + 0.377·7-s − 0.353·8-s + 0.316·10-s + 1.20·11-s + 1.10·13-s − 0.267·14-s + 1/4·16-s − 0.223·20-s − 0.852·22-s − 0.417·23-s + 1/5·25-s − 0.784·26-s + 0.188·28-s − 0.371·29-s − 1.07·31-s − 0.176·32-s − 0.169·35-s + 1.64·37-s + 0.158·40-s + 1.56·41-s + 0.603·44-s + 0.294·46-s + 1/7·49-s − 0.141·50-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.429039100\)
\(L(\frac12)\) \(\approx\) \(2.429039100\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 - T \)
17 \( 1 \)
good11 \( 1 - 4 T + p T^{2} \) 1.11.ae
13 \( 1 - 4 T + p T^{2} \) 1.13.ae
19 \( 1 + p T^{2} \) 1.19.a
23 \( 1 + 2 T + p T^{2} \) 1.23.c
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 10 T + p T^{2} \) 1.41.ak
43 \( 1 + p T^{2} \) 1.43.a
47 \( 1 + p T^{2} \) 1.47.a
53 \( 1 + 14 T + p T^{2} \) 1.53.o
59 \( 1 - 8 T + p T^{2} \) 1.59.ai
61 \( 1 + p T^{2} \) 1.61.a
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 2 T + p T^{2} \) 1.73.ac
79 \( 1 - 12 T + p T^{2} \) 1.79.am
83 \( 1 + 4 T + p T^{2} \) 1.83.e
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 + 6 T + p T^{2} \) 1.97.g
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.91636392238810, −12.70690325531343, −12.13548810719192, −11.43952648623404, −11.25019112422170, −11.01355635489741, −10.34570027883180, −9.636702298863064, −9.339848846503928, −8.918563420895389, −8.366605804870309, −7.895112178423671, −7.549116133313378, −6.924572548182869, −6.283148232928437, −6.112909575078885, −5.404290648353936, −4.678177908325276, −4.046298646434041, −3.720104306555224, −3.132265052119524, −2.259010929348898, −1.759369924359983, −1.037192473530312, −0.5953009758222041, 0.5953009758222041, 1.037192473530312, 1.759369924359983, 2.259010929348898, 3.132265052119524, 3.720104306555224, 4.046298646434041, 4.678177908325276, 5.404290648353936, 6.112909575078885, 6.283148232928437, 6.924572548182869, 7.549116133313378, 7.895112178423671, 8.366605804870309, 8.918563420895389, 9.339848846503928, 9.636702298863064, 10.34570027883180, 11.01355635489741, 11.25019112422170, 11.43952648623404, 12.13548810719192, 12.70690325531343, 12.91636392238810

Graph of the $Z$-function along the critical line