Properties

Label 2-182070-1.1-c1-0-40
Degree $2$
Conductor $182070$
Sign $-1$
Analytic cond. $1453.83$
Root an. cond. $38.1292$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s + 4-s − 5-s − 7-s − 8-s + 10-s − 4·13-s + 14-s + 16-s − 4·19-s − 20-s + 25-s + 4·26-s − 28-s − 3·29-s − 5·31-s − 32-s + 35-s + 7·37-s + 4·38-s + 40-s + 6·41-s − 10·43-s + 3·47-s + 49-s − 50-s − 4·52-s + ⋯
L(s)  = 1  − 0.707·2-s + 1/2·4-s − 0.447·5-s − 0.377·7-s − 0.353·8-s + 0.316·10-s − 1.10·13-s + 0.267·14-s + 1/4·16-s − 0.917·19-s − 0.223·20-s + 1/5·25-s + 0.784·26-s − 0.188·28-s − 0.557·29-s − 0.898·31-s − 0.176·32-s + 0.169·35-s + 1.15·37-s + 0.648·38-s + 0.158·40-s + 0.937·41-s − 1.52·43-s + 0.437·47-s + 1/7·49-s − 0.141·50-s − 0.554·52-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 182070 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(182070\)    =    \(2 \cdot 3^{2} \cdot 5 \cdot 7 \cdot 17^{2}\)
Sign: $-1$
Analytic conductor: \(1453.83\)
Root analytic conductor: \(38.1292\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 182070,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 + T \)
3 \( 1 \)
5 \( 1 + T \)
7 \( 1 + T \)
17 \( 1 \)
good11 \( 1 + p T^{2} \) 1.11.a
13 \( 1 + 4 T + p T^{2} \) 1.13.e
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + 3 T + p T^{2} \) 1.29.d
31 \( 1 + 5 T + p T^{2} \) 1.31.f
37 \( 1 - 7 T + p T^{2} \) 1.37.ah
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 10 T + p T^{2} \) 1.43.k
47 \( 1 - 3 T + p T^{2} \) 1.47.ad
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 + 3 T + p T^{2} \) 1.59.d
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 12 T + p T^{2} \) 1.71.am
73 \( 1 - 7 T + p T^{2} \) 1.73.ah
79 \( 1 + 2 T + p T^{2} \) 1.79.c
83 \( 1 + 6 T + p T^{2} \) 1.83.g
89 \( 1 - 6 T + p T^{2} \) 1.89.ag
97 \( 1 - 19 T + p T^{2} \) 1.97.at
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10368736411761, −12.84565070434384, −12.49233779370553, −11.90429647258731, −11.41067585265659, −11.03160765779694, −10.53956414530585, −9.981839493299117, −9.600516232279976, −9.133534876108711, −8.706908918736169, −7.958587122675764, −7.779480383617202, −7.222681171940249, −6.633220837477470, −6.329543276384820, −5.597252472016017, −5.050973736294026, −4.492927645255037, −3.822547572832585, −3.383778821192051, −2.547240371141798, −2.250980151011599, −1.471690635124756, −0.5914341591415261, 0, 0.5914341591415261, 1.471690635124756, 2.250980151011599, 2.547240371141798, 3.383778821192051, 3.822547572832585, 4.492927645255037, 5.050973736294026, 5.597252472016017, 6.329543276384820, 6.633220837477470, 7.222681171940249, 7.779480383617202, 7.958587122675764, 8.706908918736169, 9.133534876108711, 9.600516232279976, 9.981839493299117, 10.53956414530585, 11.03160765779694, 11.41067585265659, 11.90429647258731, 12.49233779370553, 12.84565070434384, 13.10368736411761

Graph of the $Z$-function along the critical line