Properties

Label 2-178752-1.1-c1-0-14
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 3·11-s − 2·13-s − 2·15-s + 17-s + 19-s − 7·23-s − 25-s + 27-s − 10·29-s − 6·31-s + 3·33-s + 8·37-s − 2·39-s + 6·41-s + 4·43-s − 2·45-s − 9·47-s + 51-s + 4·53-s − 6·55-s + 57-s − 6·59-s + 61-s + 4·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.904·11-s − 0.554·13-s − 0.516·15-s + 0.242·17-s + 0.229·19-s − 1.45·23-s − 1/5·25-s + 0.192·27-s − 1.85·29-s − 1.07·31-s + 0.522·33-s + 1.31·37-s − 0.320·39-s + 0.937·41-s + 0.609·43-s − 0.298·45-s − 1.31·47-s + 0.140·51-s + 0.549·53-s − 0.809·55-s + 0.132·57-s − 0.781·59-s + 0.128·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(1.046023728\)
\(L(\frac12)\) \(\approx\) \(1.046023728\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 + 7 T + p T^{2} \) 1.23.h
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 + 6 T + p T^{2} \) 1.31.g
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 + 6 T + p T^{2} \) 1.59.g
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 + 14 T + p T^{2} \) 1.67.o
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 - 4 T + p T^{2} \) 1.79.ae
83 \( 1 - T + p T^{2} \) 1.83.ab
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.18258330793196, −12.60232541112843, −12.28840308153470, −11.73437047311940, −11.28459307207376, −11.05682520126239, −10.12738889330883, −9.844142008833953, −9.284744202506514, −8.963239621095960, −8.342358654623104, −7.716908978250763, −7.475231800789117, −7.230191875505804, −6.127170587705373, −6.094131176784033, −5.280822973793151, −4.568350458619795, −3.990023359837766, −3.841628619315603, −3.188665948657935, −2.485348472711418, −1.852428430898066, −1.299371630033038, −0.2799327600343729, 0.2799327600343729, 1.299371630033038, 1.852428430898066, 2.485348472711418, 3.188665948657935, 3.841628619315603, 3.990023359837766, 4.568350458619795, 5.280822973793151, 6.094131176784033, 6.127170587705373, 7.230191875505804, 7.475231800789117, 7.716908978250763, 8.342358654623104, 8.963239621095960, 9.284744202506514, 9.844142008833953, 10.12738889330883, 11.05682520126239, 11.28459307207376, 11.73437047311940, 12.28840308153470, 12.60232541112843, 13.18258330793196

Graph of the $Z$-function along the critical line