Properties

Label 2-178752-1.1-c1-0-130
Degree $2$
Conductor $178752$
Sign $-1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 3·5-s + 9-s + 3·11-s − 4·13-s − 3·15-s − 6·17-s − 19-s − 23-s + 4·25-s + 27-s − 2·29-s + 2·31-s + 3·33-s − 4·37-s − 4·39-s + 6·41-s − 3·43-s − 3·45-s − 9·47-s − 6·51-s + 6·53-s − 9·55-s − 57-s + 4·59-s − 3·61-s + 12·65-s + ⋯
L(s)  = 1  + 0.577·3-s − 1.34·5-s + 1/3·9-s + 0.904·11-s − 1.10·13-s − 0.774·15-s − 1.45·17-s − 0.229·19-s − 0.208·23-s + 4/5·25-s + 0.192·27-s − 0.371·29-s + 0.359·31-s + 0.522·33-s − 0.657·37-s − 0.640·39-s + 0.937·41-s − 0.457·43-s − 0.447·45-s − 1.31·47-s − 0.840·51-s + 0.824·53-s − 1.21·55-s − 0.132·57-s + 0.520·59-s − 0.384·61-s + 1.48·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 3 T + p T^{2} \) 1.5.d
11 \( 1 - 3 T + p T^{2} \) 1.11.ad
13 \( 1 + 4 T + p T^{2} \) 1.13.e
17 \( 1 + 6 T + p T^{2} \) 1.17.g
23 \( 1 + T + p T^{2} \) 1.23.b
29 \( 1 + 2 T + p T^{2} \) 1.29.c
31 \( 1 - 2 T + p T^{2} \) 1.31.ac
37 \( 1 + 4 T + p T^{2} \) 1.37.e
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 3 T + p T^{2} \) 1.43.d
47 \( 1 + 9 T + p T^{2} \) 1.47.j
53 \( 1 - 6 T + p T^{2} \) 1.53.ag
59 \( 1 - 4 T + p T^{2} \) 1.59.ae
61 \( 1 + 3 T + p T^{2} \) 1.61.d
67 \( 1 - 8 T + p T^{2} \) 1.67.ai
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 - 9 T + p T^{2} \) 1.73.aj
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 + 5 T + p T^{2} \) 1.83.f
89 \( 1 - 4 T + p T^{2} \) 1.89.ae
97 \( 1 + 14 T + p T^{2} \) 1.97.o
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.34957605600209, −12.91628504592399, −12.35122852313343, −12.06702876181032, −11.52451689470311, −11.12063421806160, −10.73925329810828, −9.900665382159364, −9.618127952469407, −9.048424982271678, −8.570206010180050, −8.129671680757052, −7.751444590741335, −7.024269295754003, −6.861809860523160, −6.337269608362754, −5.456792355058474, −4.794242311797526, −4.448347948877143, −3.792211109162244, −3.645068504343535, −2.733481157719148, −2.274169376592308, −1.618752202779818, −0.6691623601684185, 0, 0.6691623601684185, 1.618752202779818, 2.274169376592308, 2.733481157719148, 3.645068504343535, 3.792211109162244, 4.448347948877143, 4.794242311797526, 5.456792355058474, 6.337269608362754, 6.861809860523160, 7.024269295754003, 7.751444590741335, 8.129671680757052, 8.570206010180050, 9.048424982271678, 9.618127952469407, 9.900665382159364, 10.73925329810828, 11.12063421806160, 11.52451689470311, 12.06702876181032, 12.35122852313343, 12.91628504592399, 13.34957605600209

Graph of the $Z$-function along the critical line