Properties

Label 2-178752-1.1-c1-0-125
Degree $2$
Conductor $178752$
Sign $-1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3-s − 2·5-s + 9-s − 3·11-s − 2·13-s + 2·15-s + 17-s − 19-s + 7·23-s − 25-s − 27-s − 10·29-s + 6·31-s + 3·33-s + 8·37-s + 2·39-s + 6·41-s − 4·43-s − 2·45-s + 9·47-s − 51-s + 4·53-s + 6·55-s + 57-s + 6·59-s + 61-s + 4·65-s + ⋯
L(s)  = 1  − 0.577·3-s − 0.894·5-s + 1/3·9-s − 0.904·11-s − 0.554·13-s + 0.516·15-s + 0.242·17-s − 0.229·19-s + 1.45·23-s − 1/5·25-s − 0.192·27-s − 1.85·29-s + 1.07·31-s + 0.522·33-s + 1.31·37-s + 0.320·39-s + 0.937·41-s − 0.609·43-s − 0.298·45-s + 1.31·47-s − 0.140·51-s + 0.549·53-s + 0.809·55-s + 0.132·57-s + 0.781·59-s + 0.128·61-s + 0.496·65-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $-1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 + T \)
7 \( 1 \)
19 \( 1 + T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 + 3 T + p T^{2} \) 1.11.d
13 \( 1 + 2 T + p T^{2} \) 1.13.c
17 \( 1 - T + p T^{2} \) 1.17.ab
23 \( 1 - 7 T + p T^{2} \) 1.23.ah
29 \( 1 + 10 T + p T^{2} \) 1.29.k
31 \( 1 - 6 T + p T^{2} \) 1.31.ag
37 \( 1 - 8 T + p T^{2} \) 1.37.ai
41 \( 1 - 6 T + p T^{2} \) 1.41.ag
43 \( 1 + 4 T + p T^{2} \) 1.43.e
47 \( 1 - 9 T + p T^{2} \) 1.47.aj
53 \( 1 - 4 T + p T^{2} \) 1.53.ae
59 \( 1 - 6 T + p T^{2} \) 1.59.ag
61 \( 1 - T + p T^{2} \) 1.61.ab
67 \( 1 - 14 T + p T^{2} \) 1.67.ao
71 \( 1 + 6 T + p T^{2} \) 1.71.g
73 \( 1 + 15 T + p T^{2} \) 1.73.p
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 + T + p T^{2} \) 1.83.b
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 + 2 T + p T^{2} \) 1.97.c
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.23665108580241, −12.78776360876739, −12.60859248389369, −11.87271670016354, −11.41155692030966, −11.25582160955595, −10.63594465874427, −10.17017005101979, −9.672697441109582, −9.168151120801438, −8.565309639520468, −7.998733621159883, −7.598050319409732, −7.181947642893920, −6.782657524234204, −5.928222954363392, −5.568196559025366, −5.109283175742751, −4.395465108187963, −4.134530810896520, −3.421744699013263, −2.712706347016029, −2.336639582281655, −1.337238048338776, −0.6582026517026862, 0, 0.6582026517026862, 1.337238048338776, 2.336639582281655, 2.712706347016029, 3.421744699013263, 4.134530810896520, 4.395465108187963, 5.109283175742751, 5.568196559025366, 5.928222954363392, 6.782657524234204, 7.181947642893920, 7.598050319409732, 7.998733621159883, 8.565309639520468, 9.168151120801438, 9.672697441109582, 10.17017005101979, 10.63594465874427, 11.25582160955595, 11.41155692030966, 11.87271670016354, 12.60859248389369, 12.78776360876739, 13.23665108580241

Graph of the $Z$-function along the critical line