Properties

Label 2-178752-1.1-c1-0-100
Degree $2$
Conductor $178752$
Sign $1$
Analytic cond. $1427.34$
Root an. cond. $37.7801$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 3-s − 2·5-s + 9-s + 2·11-s − 6·13-s − 2·15-s − 2·17-s + 19-s + 6·23-s − 25-s + 27-s + 8·29-s + 8·31-s + 2·33-s + 10·37-s − 6·39-s − 8·41-s + 8·43-s − 2·45-s − 2·47-s − 2·51-s + 8·53-s − 4·55-s + 57-s − 6·61-s + 12·65-s + 4·67-s + ⋯
L(s)  = 1  + 0.577·3-s − 0.894·5-s + 1/3·9-s + 0.603·11-s − 1.66·13-s − 0.516·15-s − 0.485·17-s + 0.229·19-s + 1.25·23-s − 1/5·25-s + 0.192·27-s + 1.48·29-s + 1.43·31-s + 0.348·33-s + 1.64·37-s − 0.960·39-s − 1.24·41-s + 1.21·43-s − 0.298·45-s − 0.291·47-s − 0.280·51-s + 1.09·53-s − 0.539·55-s + 0.132·57-s − 0.768·61-s + 1.48·65-s + 0.488·67-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 178752 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(178752\)    =    \(2^{6} \cdot 3 \cdot 7^{2} \cdot 19\)
Sign: $1$
Analytic conductor: \(1427.34\)
Root analytic conductor: \(37.7801\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 178752,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(3.052760165\)
\(L(\frac12)\) \(\approx\) \(3.052760165\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 - T \)
7 \( 1 \)
19 \( 1 - T \)
good5 \( 1 + 2 T + p T^{2} \) 1.5.c
11 \( 1 - 2 T + p T^{2} \) 1.11.ac
13 \( 1 + 6 T + p T^{2} \) 1.13.g
17 \( 1 + 2 T + p T^{2} \) 1.17.c
23 \( 1 - 6 T + p T^{2} \) 1.23.ag
29 \( 1 - 8 T + p T^{2} \) 1.29.ai
31 \( 1 - 8 T + p T^{2} \) 1.31.ai
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 + 8 T + p T^{2} \) 1.41.i
43 \( 1 - 8 T + p T^{2} \) 1.43.ai
47 \( 1 + 2 T + p T^{2} \) 1.47.c
53 \( 1 - 8 T + p T^{2} \) 1.53.ai
59 \( 1 + p T^{2} \) 1.59.a
61 \( 1 + 6 T + p T^{2} \) 1.61.g
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 + p T^{2} \) 1.71.a
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + p T^{2} \) 1.79.a
83 \( 1 - 14 T + p T^{2} \) 1.83.ao
89 \( 1 - 16 T + p T^{2} \) 1.89.aq
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.10006366486492, −12.74515953395367, −12.01751122870116, −11.87550790946628, −11.51553445943110, −10.74025100704321, −10.30035999872577, −9.788425376527666, −9.355418722560683, −8.838594136247375, −8.401311466130976, −7.783414997196470, −7.510462693169279, −6.972107628131173, −6.503860908138196, −5.960129283694586, −4.987888403912724, −4.673096945319140, −4.354243190601931, −3.598027933490033, −3.052892662224067, −2.553694262655740, −2.044028033638802, −0.9836232035965772, −0.5807692008066283, 0.5807692008066283, 0.9836232035965772, 2.044028033638802, 2.553694262655740, 3.052892662224067, 3.598027933490033, 4.354243190601931, 4.673096945319140, 4.987888403912724, 5.960129283694586, 6.503860908138196, 6.972107628131173, 7.510462693169279, 7.783414997196470, 8.401311466130976, 8.838594136247375, 9.355418722560683, 9.788425376527666, 10.30035999872577, 10.74025100704321, 11.51553445943110, 11.87550790946628, 12.01751122870116, 12.74515953395367, 13.10006366486492

Graph of the $Z$-function along the critical line