Properties

Label 2-17850-1.1-c1-0-41
Degree $2$
Conductor $17850$
Sign $-1$
Analytic cond. $142.532$
Root an. cond. $11.9387$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2-s − 3-s + 4-s − 6-s − 7-s + 8-s + 9-s − 2·11-s − 12-s − 14-s + 16-s − 17-s + 18-s − 4·19-s + 21-s − 2·22-s − 24-s − 27-s − 28-s + 32-s + 2·33-s − 34-s + 36-s + 10·37-s − 4·38-s + 8·41-s + 42-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.577·3-s + 1/2·4-s − 0.408·6-s − 0.377·7-s + 0.353·8-s + 1/3·9-s − 0.603·11-s − 0.288·12-s − 0.267·14-s + 1/4·16-s − 0.242·17-s + 0.235·18-s − 0.917·19-s + 0.218·21-s − 0.426·22-s − 0.204·24-s − 0.192·27-s − 0.188·28-s + 0.176·32-s + 0.348·33-s − 0.171·34-s + 1/6·36-s + 1.64·37-s − 0.648·38-s + 1.24·41-s + 0.154·42-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 17850 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(17850\)    =    \(2 \cdot 3 \cdot 5^{2} \cdot 7 \cdot 17\)
Sign: $-1$
Analytic conductor: \(142.532\)
Root analytic conductor: \(11.9387\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 17850,\ (\ :1/2),\ -1)\)

Particular Values

\(L(1)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 - T \)
3 \( 1 + T \)
5 \( 1 \)
7 \( 1 + T \)
17 \( 1 + T \)
good11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 + p T^{2} \) 1.13.a
19 \( 1 + 4 T + p T^{2} \) 1.19.e
23 \( 1 + p T^{2} \) 1.23.a
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 + p T^{2} \) 1.31.a
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 8 T + p T^{2} \) 1.41.ai
43 \( 1 + 6 T + p T^{2} \) 1.43.g
47 \( 1 - 12 T + p T^{2} \) 1.47.am
53 \( 1 + 6 T + p T^{2} \) 1.53.g
59 \( 1 - 12 T + p T^{2} \) 1.59.am
61 \( 1 + 14 T + p T^{2} \) 1.61.o
67 \( 1 + 10 T + p T^{2} \) 1.67.k
71 \( 1 - 6 T + p T^{2} \) 1.71.ag
73 \( 1 + 6 T + p T^{2} \) 1.73.g
79 \( 1 + 4 T + p T^{2} \) 1.79.e
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 14 T + p T^{2} \) 1.89.o
97 \( 1 - 2 T + p T^{2} \) 1.97.ac
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.99448331639620, −15.58565287975147, −14.94572740148991, −14.57233459646787, −13.70215729948921, −13.30153451955082, −12.78283904065730, −12.32882371661836, −11.75822299698362, −10.98048528666116, −10.78071852296066, −10.06126437606712, −9.449312536883519, −8.730567314903203, −7.947147702516100, −7.391295961546993, −6.739714771430784, −6.016137095820315, −5.793353296735066, −4.832386277428790, −4.394348115795541, −3.697609746648205, −2.767785637524733, −2.224350462314564, −1.105102355157628, 0, 1.105102355157628, 2.224350462314564, 2.767785637524733, 3.697609746648205, 4.394348115795541, 4.832386277428790, 5.793353296735066, 6.016137095820315, 6.739714771430784, 7.391295961546993, 7.947147702516100, 8.730567314903203, 9.449312536883519, 10.06126437606712, 10.78071852296066, 10.98048528666116, 11.75822299698362, 12.32882371661836, 12.78283904065730, 13.30153451955082, 13.70215729948921, 14.57233459646787, 14.94572740148991, 15.58565287975147, 15.99448331639620

Graph of the $Z$-function along the critical line